编码器
计算机科学
特征(语言学)
分割
图像分割
块(置换群论)
人工智能
图像(数学)
重新使用
计算机视觉
模式识别(心理学)
数学
工程类
操作系统
语言学
哲学
废物管理
几何学
作者
Tongdan Jin,Kaixu Chen,Satoshi Yamane,Yoshihiro Kuroda
标识
DOI:10.1109/gcce56475.2022.10014305
摘要
In biomedical image segmentation, the desired performance is necessary for more detailed segmentation. In this paper, we propose the M-DenseUNet which combines multi Dense Encoders and U-Net. The encoder of M-DenseUNet consists of convolutional layers, Dense Block and Transition. We show that such a network can strengthen feature propagation and encourage feature reuse to get details.
科研通智能强力驱动
Strongly Powered by AbleSci AI