已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving the Performance of RODNet for MMW Radar Target Detection in Dense Pedestrian Scene

计算机科学 聚类分析 雷达 人工智能 目标检测 模式识别(心理学) 航程(航空) 卷积神经网络 计算机视觉 工程类 电信 航空航天工程
作者
Yang Li,Zhuang Li,Yanping Wang,Guangda Xie,Yun Lin,Wenjie Shen,Wen Jiang
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (2): 361-361 被引量:1
标识
DOI:10.3390/math11020361
摘要

In the field of autonomous driving, millimeter-wave (MMW) radar is often used as a supplement sensor of other types of sensors, such as optics, in severe weather conditions to provide target-detection services for autonomous driving. RODNet (A Real-Time Radar Object-Detection Network) is one of the most widely used MMW radar range–azimuth (RA) image sequence target-detection algorithms based on Convolutional Neural Networks (CNNs). However, RODNet adopts an object-location similarity (OLS) detection method that is independent of the number of targets to obtain the final target detections from the predicted confidence map. Therefore, it gives a poor performance on missed detection ratio in dense pedestrian scenes. Based on the analysis of the predicted confidence map distribution characteristics, we propose a new generative model-based target-location detection algorithm to improve the performance of RODNet in dense pedestrian scenes. The confidence value and space distribution predicted by RODNet are analyzed in this paper. It shows that the space distribution is more robust than the value distribution for clustering. This is useful in selecting a clustering method to estimate the clustering centers of multiple targets in close range under the effects of distributed target and radar measurement variance and multipath scattering. Another key idea of this algorithm is the derivation of a Gaussian Mixture Model with target number (GMM-TN) for generating the likelihood probability distributions of different target number assumptions. Furthermore, a minimum Kullback–Leibler (KL) divergence target number estimation scheme is proposed combined with K-means clustering and a GMM-TN model. Through the CRUW dataset, the target-detection experiment on a dense pedestrian scene is carried out, and the confidence distribution under typical hidden variable conditions is analyzed. The effectiveness of the improved algorithm is verified: the Average Precision (AP) is improved by 29% and the Average Recall (AR) is improved by 36%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
等待的士晋完成签到 ,获得积分10
6秒前
Hyh_发布了新的文献求助10
8秒前
梁采瑞发布了新的文献求助10
8秒前
科研通AI5应助jerry采纳,获得10
11秒前
11秒前
12秒前
13秒前
13秒前
郑旭辉发布了新的文献求助20
13秒前
深情安青应助cherry323采纳,获得10
15秒前
风再起时发布了新的文献求助10
16秒前
Hyh_完成签到,获得积分10
16秒前
阿灵发布了新的文献求助30
16秒前
17秒前
Mercury完成签到 ,获得积分10
17秒前
坚强煜城发布了新的文献求助10
18秒前
burstsolo完成签到,获得积分10
19秒前
哇哇哦wawao完成签到 ,获得积分10
19秒前
郑总完成签到 ,获得积分10
19秒前
可爱的小桃完成签到,获得积分10
22秒前
画舫完成签到,获得积分10
25秒前
WizBLue完成签到,获得积分10
26秒前
Felicity完成签到 ,获得积分10
26秒前
27秒前
坚强的小蘑菇完成签到 ,获得积分10
27秒前
隐形曼青应助Ray采纳,获得10
28秒前
cyanpomelo应助freshman采纳,获得10
28秒前
胖墩墩完成签到 ,获得积分10
28秒前
能干的心锁完成签到,获得积分10
29秒前
31秒前
臭鱼烂虾发布了新的文献求助20
34秒前
44秒前
TT完成签到,获得积分10
45秒前
情怀应助Ray采纳,获得10
46秒前
传奇3应助锦林采纳,获得10
46秒前
cherry323发布了新的文献求助10
48秒前
巧克力coco完成签到,获得积分10
49秒前
chen完成签到 ,获得积分10
49秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804061
求助须知:如何正确求助?哪些是违规求助? 3348829
关于积分的说明 10340363
捐赠科研通 3065012
什么是DOI,文献DOI怎么找? 1682831
邀请新用户注册赠送积分活动 808527
科研通“疑难数据库(出版商)”最低求助积分说明 764354