Envisioning the Future Using Generative AI—Implications for Corporate Foresight Practices

作者
Francesca Zoccarato,Giovanni Toletti,Emanuele Lettieri
出处
期刊:Research-technology Management [Informa]
卷期号:68 (6): 30-41 被引量:2
标识
DOI:10.1080/08956308.2025.2557147
摘要

OVERVIEW: This study explores the integration of generative artificial intelligence (gen AI)—specifically ChatGPT—into corporate foresight practices, focusing on how its use influences scenario generation and strategic thinking. Using a combination of critical discourse analysis and content analysis, we identify three distinct ways innovation managers engage with ChatGPT: full delegation, confirmation of beliefs, and information retrieval for cognitive support. Our findings reveal how these different interactions affect the depth and diversity of foresight exercises, influencing whether gen AI challenges or reinforces existing assumptions. This study contributes to the foresight literature by illustrating that gen AI’s role in creative processes is contingent on user interaction. We provide managerial insights on how to leverage gen AI to enhance strategic imagination while promoting critical evaluation, ultimately supporting more balanced and reflective future-oriented decision-making. PRACTITIONER TAKEAWAYS ChatGPT is a valuable tool for scenario generation, integrating key trends and building comprehensive, systemic narratives that focus on broader dynamics rather than isolated events or individual characters, without losing analyzed information. Three main approaches to ChatGPT use emerged: delegation, that is, full task execution for novel exploration; belief confirmation, which entails expanding preexisting ideas; and cognitive support, the iterative integration with existing mental models. Alignment with foresight goals is essential to determine whether ChatGPT should be used for novel exploration, confirmation of beliefs, or critical integration of new and prior ideas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chai完成签到,获得积分10
刚刚
隐身小怪兽完成签到 ,获得积分10
1秒前
甜甜完成签到,获得积分10
1秒前
1秒前
young发布了新的文献求助10
2秒前
2秒前
平淡的画板完成签到,获得积分10
2秒前
3秒前
害人精x完成签到,获得积分10
3秒前
3秒前
五斤老陈醋完成签到,获得积分10
3秒前
薏晓完成签到 ,获得积分10
4秒前
老迟到的冬瓜应助傅。采纳,获得10
4秒前
小龙完成签到,获得积分10
4秒前
口袋小镇完成签到,获得积分10
4秒前
111完成签到,获得积分10
4秒前
所所应助lars采纳,获得10
4秒前
朴实灵竹发布了新的文献求助10
4秒前
完美世界应助大宝君采纳,获得10
4秒前
5秒前
Owen应助星星采纳,获得10
5秒前
guihuahua21完成签到,获得积分10
5秒前
现代的bb完成签到,获得积分10
6秒前
6秒前
6秒前
小青椒应助残剑月采纳,获得30
6秒前
7秒前
7秒前
丘比特应助许初采纳,获得10
7秒前
晨许沫光完成签到,获得积分10
7秒前
7秒前
8秒前
Owen应助小鹅采纳,获得10
8秒前
wu完成签到,获得积分10
8秒前
头哥应助白白凝采纳,获得10
8秒前
mwh发布了新的文献求助10
8秒前
9秒前
9秒前
愉快敏完成签到,获得积分20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612908
求助须知:如何正确求助?哪些是违规求助? 4698195
关于积分的说明 14896146
捐赠科研通 4734504
什么是DOI,文献DOI怎么找? 2546725
邀请新用户注册赠送积分活动 1510739
关于科研通互助平台的介绍 1473494