Data from Multitask Deep Learning Based on Longitudinal CT Images Facilitates Prediction of Lymph Node Metastasis and Survival in Chemotherapy-Treated Gastric Cancer

淋巴结转移 医学 癌症 化疗 节点(物理) 淋巴结 转移 深度学习 肿瘤科 内科学 人工智能 计算机科学 工程类 结构工程
作者
Bingjiang Qiu,Yunlin Zheng,Shunli Liu,Ruirui Song,Lei Wu,Cheng Lu,Xianqi Yang,Wei Wang,Zaiyi Liu,Yanfen Cui
标识
DOI:10.1158/0008-5472.c.7906469
摘要

<div>Abstract<p>Accurate preoperative assessment of lymph node metastasis (LNM) and overall survival (OS) status is essential for patients with locally advanced gastric cancer receiving neoadjuvant chemotherapy, providing timely guidance for clinical decision-making. However, current approaches to evaluate LNM and OS have limited accuracy. In this study, we used longitudinal CT images from 1,021 patients with locally advanced gastric cancer to develop and validate a multitask deep learning model, named co-attention tri-oriented spatial Mamba (CTSMamba), to simultaneously predict LNM and OS. CTSMamba was trained and validated on 398 patients, and the performance was further validated on 623 patients at two additional centers. Notably, CTSMamba exhibited significantly more robust performance than a clinical model in predicting LNM across all of the cohorts. Additionally, integrating CTSMamba survival scores with clinical predictors further improved personalized OS prediction. These results support the potential of CTSMamba to accurately predict LNM and OS from longitudinal images, potentially providing clinicians with a tool to inform individualized treatment approaches and optimized prognostic strategies.</p>Significance:<p>CTSMamba is a multitask deep learning model trained on longitudinal CT images of neoadjuvant chemotherapy-treated locally advanced gastric cancer that accurately predicts lymph node metastasis and overall survival to inform clinical decision-making.</p><p><a href="https://aacrjournals.org/cancerres/pages/data-science-special-series" target="_blank">This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.</a></p></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性的皮卡丘完成签到 ,获得积分10
1秒前
3秒前
3秒前
早睡完成签到 ,获得积分10
4秒前
simon完成签到,获得积分10
7秒前
yldw发布了新的文献求助10
9秒前
数乱了梨花完成签到 ,获得积分10
9秒前
12秒前
查重率咋一百完成签到,获得积分10
12秒前
nicky完成签到 ,获得积分10
13秒前
14秒前
15秒前
16秒前
songyu完成签到,获得积分10
17秒前
没事走两步完成签到,获得积分10
18秒前
keyan完成签到,获得积分10
19秒前
专注的文龙完成签到,获得积分10
21秒前
回忆发布了新的文献求助30
21秒前
嘉心糖发布了新的文献求助200
21秒前
yldw完成签到,获得积分10
21秒前
woodword完成签到,获得积分10
22秒前
zhang5657发布了新的文献求助10
22秒前
蔡从安完成签到,获得积分20
23秒前
24秒前
yellow完成签到,获得积分10
24秒前
26秒前
绿波电龙完成签到,获得积分10
26秒前
阿瓜发布了新的文献求助10
27秒前
Benhnhk21完成签到,获得积分10
27秒前
ybheart完成签到,获得积分0
28秒前
mojomars完成签到,获得积分10
31秒前
Rainielove0215完成签到,获得积分0
31秒前
34秒前
小罗完成签到 ,获得积分10
36秒前
李东东完成签到 ,获得积分10
36秒前
英姑应助toto采纳,获得10
37秒前
suodeheng完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
lixian发布了新的文献求助10
39秒前
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972830
求助须知:如何正确求助?哪些是违规求助? 3517174
关于积分的说明 11186554
捐赠科研通 3252797
什么是DOI,文献DOI怎么找? 1796634
邀请新用户注册赠送积分活动 876503
科研通“疑难数据库(出版商)”最低求助积分说明 805701