淋巴结转移
医学
癌症
化疗
节点(物理)
淋巴结
转移
深度学习
肿瘤科
内科学
人工智能
计算机科学
工程类
结构工程
作者
Bingjiang Qiu,Yunlin Zheng,Shunli Liu,Ruirui Song,Lei Wu,Cheng Lu,Xianqi Yang,Wei Wang,Zaiyi Liu,Yanfen Cui
标识
DOI:10.1158/0008-5472.c.7906469
摘要
<div>Abstract<p>Accurate preoperative assessment of lymph node metastasis (LNM) and overall survival (OS) status is essential for patients with locally advanced gastric cancer receiving neoadjuvant chemotherapy, providing timely guidance for clinical decision-making. However, current approaches to evaluate LNM and OS have limited accuracy. In this study, we used longitudinal CT images from 1,021 patients with locally advanced gastric cancer to develop and validate a multitask deep learning model, named co-attention tri-oriented spatial Mamba (CTSMamba), to simultaneously predict LNM and OS. CTSMamba was trained and validated on 398 patients, and the performance was further validated on 623 patients at two additional centers. Notably, CTSMamba exhibited significantly more robust performance than a clinical model in predicting LNM across all of the cohorts. Additionally, integrating CTSMamba survival scores with clinical predictors further improved personalized OS prediction. These results support the potential of CTSMamba to accurately predict LNM and OS from longitudinal images, potentially providing clinicians with a tool to inform individualized treatment approaches and optimized prognostic strategies.</p>Significance:<p>CTSMamba is a multitask deep learning model trained on longitudinal CT images of neoadjuvant chemotherapy-treated locally advanced gastric cancer that accurately predicts lymph node metastasis and overall survival to inform clinical decision-making.</p><p><a href="https://aacrjournals.org/cancerres/pages/data-science-special-series" target="_blank">This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.</a></p></div>
科研通智能强力驱动
Strongly Powered by AbleSci AI