已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Latent Class Analysis of Depression-Fatigue-Pain Interference Symptoms and Associated Demographic Factors by sex in Chinese patients with stroke: A Cross-Sectional Study

横断面研究 萧条(经济学) 潜在类模型 冲程(发动机) 心理学 医学 临床心理学 机械工程 统计 数学 病理 工程类 经济 宏观经济学
作者
Yanjin Huang,Zhiqing He,Wangwang Zhang,Yuqian Liu,Wen Zeng,Rong Chen,Changrong Yuan
出处
期刊:Asian Nursing Research [Elsevier BV]
标识
DOI:10.1016/j.anr.2025.05.006
摘要

Patients with stroke often experience a series of symptoms during treatment and rehabilitation, which may present various characteristics in different subgroups. The aims of this study were to explore the characteristics of latent class groups of depression, fatigue, and pain in patients of different sexes with stroke and to determine the influence of demographic characteristics on different latent class groups by sex. The data of 501 patients with stroke were collected from two tertiary hospitals using convenience sampling between March 2022 and September 2022. The three-domain short forms of PROMIS were measured. Two homogenous classes were identified in the men and women groups using the latent class analysis (LCA) method. Multivariable logistic regression analyses were used to examine the relationships of latent classes with demographic data by sex. For the 501 patients studied, the LCA model fit with the two latent classes was statistically significant for both men and women. In the men group, Class 1 comprised 38.8% of the men population, Class 2 made up the remaining 61.2%, and the probability of membership was 52.2% and 47.8% for Class 1 and Class 2 in the women, respectively. Women had more severe symptom characteristics and more demographically impacted parameters than men. The factors that influenced male and female patients differed, with household monthly income having the same influence in both groups. This study found that the latent classes of patients with stroke were highly heterogeneous, with women having more severe symptom characteristics and demographic differences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平心定气完成签到 ,获得积分10
3秒前
英姑应助美满傀斗采纳,获得10
4秒前
干净的翠琴完成签到 ,获得积分10
9秒前
zy95282完成签到,获得积分10
12秒前
上官若男应助max采纳,获得10
12秒前
16秒前
16秒前
美满傀斗发布了新的文献求助10
20秒前
23秒前
max发布了新的文献求助10
27秒前
nnn完成签到,获得积分10
27秒前
Brain完成签到 ,获得积分10
29秒前
Aaron完成签到 ,获得积分0
30秒前
38秒前
Owen应助了了采纳,获得50
41秒前
Doctor发布了新的文献求助10
42秒前
诚心的信封完成签到 ,获得积分10
43秒前
田様应助max采纳,获得10
43秒前
狮子清明尊完成签到,获得积分10
45秒前
赘婿应助狮子清明尊采纳,获得10
48秒前
陈欣瑶完成签到 ,获得积分10
48秒前
49秒前
可爱的函函应助Doctor采纳,获得10
52秒前
54秒前
了了发布了新的文献求助50
54秒前
Joeswith完成签到,获得积分10
55秒前
李爱国应助YDX采纳,获得10
59秒前
max发布了新的文献求助10
1分钟前
海洋岩土12138完成签到 ,获得积分10
1分钟前
lzc完成签到 ,获得积分10
1分钟前
OLaLa完成签到,获得积分20
1分钟前
Panther完成签到,获得积分10
1分钟前
1分钟前
回眸完成签到 ,获得积分10
1分钟前
斯文败类应助77采纳,获得10
1分钟前
1分钟前
百里守约完成签到 ,获得积分10
1分钟前
Krim完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994886
求助须知:如何正确求助?哪些是违规求助? 3535036
关于积分的说明 11267028
捐赠科研通 3274824
什么是DOI,文献DOI怎么找? 1806478
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762