材料科学
电催化剂
对偶(语法数字)
电解质
硼
半导体
电荷(物理)
化学物理
分解水
纳米技术
电化学
光电子学
物理化学
电极
催化作用
物理
量子力学
艺术
文学类
核物理学
化学
光催化
生物化学
作者
Wei Zhao,Ze Wang,Hui‐Hsun Huang,Yaorong He,Shaoyu Zou,Lin Zhu,Hui Xiao,Xingming Ning,Wei Luo,Peiyao Du,Xiaoquan Lu
标识
DOI:10.1002/aenm.202504275
摘要
Abstract Promoting the generation of highly active species at semiconductor/electrocatalyst/electrolyte interfaces can enhance photoelectrochemical (PEC) water splitting performance, yet achieving this goal remains challenging with current strategies. Herein, a feasible boron (B) engineering strategy is proposed to simultaneously modulate interface charge transfer and surface catalytic reaction dynamics by incorporating electron‐deficient B into a state‐of‐the‐art semiconductor/electrocatalyst system (BiVO 4 /FeNiOOH). Scanning photoelectrochemical microscopy and X‐ray photoelectron spectroscopy reveal that the introduction of B into FeNiOOH facilitates internal charge transfer (electrons migrate along the direction of Ni→B→Fe) via a charge relay effect, and generates more active species (Fe 3‐δ and Ni 3+δ ) at the BiVO 4 /FeNiOOH‐B/electrolyte interface, thereby accelerating both charge transfer and surface reaction dynamics. As anticipated, the BiVO 4 /FeNiOOH‐B photoanode achieves a remarkable photocurrent density of 6.58 mA cm −2 at 1.23 V RHE , along with excellent photostability. Furthermore, this B‐engineering effect can be applied to develop alternative TiO 2 /FeNiOOH‐B configurations to further enhance PEC activity. This work opens new possibilities for B engineering in semiconductor/electrocatalyst systems, enabling highly efficient and stable water‐splitting applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI