已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Assisted 3D SERS Chip with Acoustic Enrichment for High-Accuracy Diagnosis of Respiratory Viruses and Emerging Pathogens

呼吸系统 2019年冠状病毒病(COVID-19) 炸薯条 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 病毒学 医学 计算机科学 纳米技术 材料科学 病理 内科学 传染病(医学专业) 电信 疾病
作者
Yingjin Ma,Man‐Chung Wong,Menglin Song,Pui Wang,Yuan Liu,Yifei Zhao,Honglin Chen,Juewen Liu,Jianhua Hao
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:10 (10): 7886-7898
标识
DOI:10.1021/acssensors.5c02411
摘要

Outbreaks of SARS-CoV-2, first investigated as an unknown pathogen, have reflected the severe threat that pathogen X poses to public health and social security. Early and precise diagnosis and classification of infectious respiratory diseases with similar symptoms are essential for the risk assessment of public health or epidemiological investigations. Current technologies are limited to detect known viruses, leading to false negatives for novel or mutated pathogens. Here, we propose an ML-assisted SERS strategy for screening various types of respiratory viruses and potential pathogen X in cases with similar infectious symptoms. A label-free 3D plasmonic Au-PS SERS chip was designed to amplify the Raman signal over 103-fold compared to a conventional Au substrate. An ensemble ML model was developed to analyze SERS data for effectively distinguishing between healthy individuals, SARS-CoV-2, RSV, and influenza A and B, as well as identifying newly emerging pathogens. Our experiments demonstrated that the ensemble model integrated with SERS spectra achieved a remarkable classification accuracy of 100%. Notably, the model exhibited excellent performance in detecting mixed viral infections and simulated pathogen X, with a reliable detection range of viral concentrations from 5 × 102 to 106 PFU/mL under acoustic enrichment. This approach holds significant promise for the early screening and detection of emerging and known respiratory pathogens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tinner完成签到,获得积分10
1秒前
1秒前
ATBG55完成签到 ,获得积分10
1秒前
陌路完成签到,获得积分10
2秒前
傲寒完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
4秒前
5秒前
Twonej应助小白采纳,获得30
5秒前
田様应助森森采纳,获得100
6秒前
彩色凡灵发布了新的文献求助10
7秒前
7秒前
wuyanchi发布了新的文献求助10
8秒前
浮浮世世发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
大个应助酷炫的火车采纳,获得10
9秒前
左贵辉发布了新的文献求助10
10秒前
勿念完成签到,获得积分20
11秒前
11秒前
wanci应助寂静之声采纳,获得10
12秒前
三三完成签到,获得积分10
13秒前
渡安发布了新的文献求助10
13秒前
薛飞发布了新的文献求助10
13秒前
14秒前
14秒前
rex发布了新的文献求助10
15秒前
虚心的绝施完成签到 ,获得积分10
16秒前
天意如此完成签到,获得积分10
16秒前
17秒前
勿念发布了新的文献求助10
18秒前
彭于晏应助薛飞采纳,获得10
18秒前
19秒前
19秒前
orixero应助年年采纳,获得10
20秒前
20秒前
21秒前
23秒前
宇宙发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663813
求助须知:如何正确求助?哪些是违规求助? 4853007
关于积分的说明 15105807
捐赠科研通 4822042
什么是DOI,文献DOI怎么找? 2581165
邀请新用户注册赠送积分活动 1535358
关于科研通互助平台的介绍 1493722