催化作用
双功能
吸附
X射线光电子能谱
氧烷
电化学
氨
脱氢
密度泛函理论
扩展X射线吸收精细结构
化学
氧化还原
材料科学
无机化学
化学工程
电极
光谱学
物理化学
吸收光谱法
计算化学
有机化学
工程类
物理
量子力学
作者
Qikai Shen,Chencheng Dai,Yuan Liu,Yuwei Zhang,Pengfei Song,Pinxian Xi,Shibo Xi,Adrian C. Fisher,Kamal Elouarzaki,Zhichuan J. Xu
标识
DOI:10.1002/anie.202513465
摘要
Abstract A rationally designed, bifunctional ammonia‐oxidation catalyst spatially decouples NH 3 activation and *OH adsorption to overcome the intrinsic trade‐off of single‐component systems. Atomically dispersed Zn single atoms in an N,O‐doped carbon support (Zn 1 /NOC) serve as dedicated *OH‐adsorption sites, while Ir‐modulated Pt(100) nanocubes selectively activate NH 3 . Comprehensive structural characterization (AC HAADF‐STEM, XPS, XANES, EXAFS) confirms Zn‐N 3 O 3 coordination and atomically isolated Zn centers. Electrochemical‐kinetic analysis, mechanistic spectroscopy, and DFT calculations reveal that Zn 1 /NOC lowers the *OH‐adsorption energy by 0.84 eV (to −0.98 eV versus −0.14 eV on Pt), facilitating the dehydrogenation steps and reducing surface poisoning. Simultaneously, traces of stabilized Ir 4+ ‐decorated Pt cubes enhance NH 3 dissociation kinetics to form N 2 . The catalyst demonstrates a specific activity of 3.80 mA cm −2 PGMs , exceeding the state‐of‐the‐art benchmarks. When deployed in a membrane‐electrode‐assembly direct ammonia fuel cell, the catalyst achieves a maximum current density of 200 mA cm −2 and a peak power density of 18 mW cm −2 , representing a significant improvement over previously reported systems, with ∼250% increase over Pt np –C || Pt/C and more than double monofunctional systems. This work demonstrates a generalizable strategy for engineering spatially decoupled active sites in multistep electrochemical reactions, paving the way for high‐performance ammonia fuel cells and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI