Progressive Distillation for Incremental Learning in Corneal Confocal Microscopy Segmentation

共焦显微镜 分割 共焦 人工智能 图像分割 显微镜 计算机科学 计算机视觉 模式识别(心理学) 光学 物理
作者
Hongshuo Li,Baikai Ma,Lei Mou,Yonghuai Liu,Qinxiang Zheng,Hong Qi,Yitian Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 149-161
标识
DOI:10.1109/tmi.2025.3593472
摘要

The morphological changes of corneal structures captured by corneal confocal microscopy (CCM), such as corneal nerves, Langerhans cells, stromal cells, etc., are closely related to various ocular and systemic diseases. Current CCM segmentation methods primarily focus on single-task, which limits their broad applicability in clinical practice. The absence of a standardized benchmark further presents a significant challenge in evaluating new methods. To this end, this paper presents a novel incremental learning-based approach for multi-structure segmentation in CCM images and a new benchmark. Specifically, we first propose a data fingerprint distillation (FIND) module to encode task-relevant knowledge by extracting compact representations of structures from CCM images via structural importance mapping. Building on FIND, we propose a progressive task-guided adapter learning (ProTA) strategy, which refines the model's representation of structures through a series of "easy-to-hard" distillation stages. ProTA dynamically adjusts the scope of task-relevant knowledge extracted by FIND, thereby improving the model's ability to accurately discriminate between multiple structures while enhancing knowledge transfer efficiency. Extensive experiments demonstrate that the proposed method achieves the state-of-the-art performance in terms of all corneal structures segmentation. We also demonstrate our approach's plug-and-play capability across four other medical image modalities, suggesting its potential as a general incremental learning tool. Additionally, this work seeks to provide a benchmark tool comprising a comprehensive dataset and their fine manual annotation, as well as unified benchmarking evaluations for state-of-the-art methods. All the dataset, source code and evaluation tool are publicly available at https://github.com/iMED-Lab/CCM-Pro.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cmh发布了新的文献求助10
刚刚
桐桐应助羊村第一巴图鲁采纳,获得10
刚刚
烂漫猫咪发布了新的文献求助10
刚刚
赘婿应助害羞的败采纳,获得10
刚刚
1秒前
猪猪hero发布了新的文献求助10
1秒前
1秒前
1秒前
kk发布了新的文献求助10
1秒前
1秒前
2秒前
小荷发布了新的文献求助10
2秒前
biotnt发布了新的文献求助10
2秒前
ActonMartin完成签到,获得积分10
3秒前
OU发布了新的文献求助10
3秒前
sun完成签到,获得积分20
4秒前
harry发布了新的文献求助10
4秒前
师国瑞完成签到,获得积分10
4秒前
Jasper应助Mira+采纳,获得10
4秒前
5秒前
5秒前
cuer发布了新的文献求助10
5秒前
小韩儒儒发布了新的文献求助10
6秒前
6秒前
李爱国应助acorn采纳,获得10
6秒前
pny发布了新的文献求助10
6秒前
7秒前
7秒前
Lizhenxiang发布了新的文献求助10
7秒前
7秒前
7秒前
小蘑菇应助wangs采纳,获得10
8秒前
8秒前
milkmore完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
思源应助橙子采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668461
求助须知:如何正确求助?哪些是违规求助? 4890899
关于积分的说明 15124429
捐赠科研通 4827351
什么是DOI,文献DOI怎么找? 2584580
邀请新用户注册赠送积分活动 1538453
关于科研通互助平台的介绍 1496742