Impact of Artificial Intelligence System and Volumetric Density on Risk Prediction of Interval, Screen-Detected, and Advanced Breast Cancer

医学 乳腺癌 乳腺摄影术 置信区间 优势比 癌症 逻辑回归 内科学 肿瘤科
作者
Celine M. Vachon,Christopher G. Scott,Aaron D. Norman,Sadia Khanani,Matthew R. Jensen,Carrie B. Hruska,Kathleen R. Brandt,Stacey J. Winham,Karla Kerlikowske
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:41 (17): 3172-3183 被引量:1
标识
DOI:10.1200/jco.22.01153
摘要

Artificial intelligence (AI) algorithms improve breast cancer detection on mammography, but their contribution to long-term risk prediction for advanced and interval cancers is unknown.We identified 2,412 women with invasive breast cancer and 4,995 controls matched on age, race, and date of mammogram, from two US mammography cohorts, who had two-dimensional full-field digital mammograms performed 2-5.5 years before cancer diagnosis. We assessed Breast Imaging Reporting and Data System density, an AI malignancy score (1-10), and volumetric density measures. We used conditional logistic regression to estimate odds ratios (ORs), 95% CIs, adjusted for age and BMI, and C-statistics (AUC) to describe the association of AI score with invasive cancer and its contribution to models with breast density measures. Likelihood ratio tests (LRTs) and bootstrapping methods were used to compare model performance.On mammograms between 2-5.5 years prior to cancer, a one unit increase in AI score was associated with 20% greater odds of invasive breast cancer (OR, 1.20; 95% CI, 1.17 to 1.22; AUC, 0.63; 95% CI, 0.62 to 0.64) and was similarly predictive of interval (OR, 1.20; 95% CI, 1.13 to 1.27; AUC, 0.63) and advanced cancers (OR, 1.23; 95% CI, 1.16 to 1.31; AUC, 0.64) and in dense (OR, 1.18; 95% CI, 1.15 to 1.22; AUC, 0.66) breasts. AI score improved prediction of all cancer types in models with density measures (PLRT values < .001); discrimination improved for advanced cancer (ie, AUC for dense volume increased from 0.624 to 0.679, Δ AUC 0.065, P = .01) but did not reach statistical significance for interval cancer.AI imaging algorithms coupled with breast density independently contribute to long-term risk prediction of invasive breast cancers, in particular, advanced cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dyjjudy发布了新的文献求助10
刚刚
QTQ发布了新的文献求助10
刚刚
刚刚
1秒前
孙明浩完成签到 ,获得积分10
2秒前
xyz发布了新的文献求助10
2秒前
负责冰凡完成签到,获得积分10
2秒前
不吃芹菜完成签到,获得积分10
5秒前
Ansel_Schneider完成签到 ,获得积分10
5秒前
缥缈孤鸿影完成签到 ,获得积分10
6秒前
6秒前
6秒前
李健应助孤独听荷采纳,获得10
8秒前
N7完成签到,获得积分10
8秒前
yysdashuaibi完成签到 ,获得积分10
8秒前
科研通AI6应助灵巧的荔枝采纳,获得10
9秒前
rrr完成签到,获得积分10
10秒前
l37u2n完成签到,获得积分10
10秒前
xyz完成签到,获得积分10
11秒前
11秒前
柳德焕发布了新的文献求助10
12秒前
12秒前
MiSD完成签到,获得积分10
12秒前
lrf完成签到,获得积分10
14秒前
14秒前
15秒前
llllliu应助叶伟帮采纳,获得30
15秒前
科研通AI6应助叶伟帮采纳,获得10
15秒前
隐形曼青应助叶伟帮采纳,获得10
15秒前
l37u2n发布了新的文献求助10
15秒前
ding应助QTQ采纳,获得10
15秒前
CipherSage应助wlx采纳,获得10
15秒前
席以亦完成签到,获得积分10
16秒前
香蕉觅云应助专注的月亮采纳,获得10
17秒前
17秒前
阴香萍发布了新的文献求助30
18秒前
冷傲梦蕊关注了科研通微信公众号
18秒前
紧张的友灵完成签到 ,获得积分10
19秒前
jiafang发布了新的文献求助10
20秒前
666完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284735
求助须知:如何正确求助?哪些是违规求助? 4438091
关于积分的说明 13816059
捐赠科研通 4319191
什么是DOI,文献DOI怎么找? 2370875
邀请新用户注册赠送积分活动 1366249
关于科研通互助平台的介绍 1329765