A multi-fidelity surrogate model for structural health monitoring exploiting model order reduction and artificial neural networks

计算机科学 还原(数学) 替代模型 忠诚 人工神经网络 结构健康监测 不确定度量化 人工智能 高保真 机器学习 帧(网络) 算法 工程类 数学 电信 几何学 电气工程 结构工程
作者
Matteo Torzoni,Andrea Manzoni,Stefano Mariani
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:197: 110376-110376 被引量:28
标识
DOI:10.1016/j.ymssp.2023.110376
摘要

Stochastic approaches to structural health monitoring (SHM) are often inevitably limited by computational constraints. For instance, for Markov chain Monte Carlo algorithms relying upon computationally expensive finite element models it is almost infeasible to sample the probability distribution of the structural state. To provide instead real-time procedures, this work proposes a non-intrusive surrogate modeling strategy, leveraging model order reduction and artificial neural networks. By relying upon a multi-fidelity (MF) framework, a composition of deep neural networks (DNNs) is devised to map damage and operational parameters onto time-dependent sensor recordings. Such an effective strategy is able to exploit datasets characterized by different fidelity levels without any prior assumption, allowing to blend a small high-fidelity (HF) dataset with a large low-fidelity (LF) dataset, ultimately alleviating the computational burden of supervised training while ensuring the accuracy of the approximated quantities of interest. The resulting surrogate model is made of an LF-DNN, which mimics sensor recordings in the undamaged condition, and of a long short-term memory HF-DNN, which adaptively refines the approximation with the effect of damage. An HF finite element model and an LF reduced order model are adopted offline to generate labeled training data of different fidelity, respectively in the presence or absence of a structural damage. Results relevant to an L-shaped cantilever beam and a portal frame railway bridge prove that the procedure efficiently provides remarkably accurate approximations, outperforming their single-fidelity counterparts. The capability of the MF-DNN to be exploited for SHM purposes is finally shown within an automated Bayesian procedure, aimed at updating the probability distribution of the structural state conditioned on sensor recordings, in the presence of operational variability and measurement noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘cc发布了新的文献求助10
刚刚
刚刚
刚刚
张飞完成签到,获得积分10
刚刚
李天真完成签到,获得积分10
刚刚
清欢完成签到,获得积分10
1秒前
上官若男应助阿拉蕾采纳,获得10
2秒前
2秒前
云墨发布了新的文献求助10
3秒前
可爱的函函应助舒心傲蕾采纳,获得10
3秒前
党丹完成签到,获得积分10
3秒前
4秒前
4秒前
JamesPei应助有魅力的孤云采纳,获得10
4秒前
5秒前
5秒前
5秒前
元羞花发布了新的文献求助10
5秒前
今后应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
疯狂的牛富贵完成签到,获得积分10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
ED应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得30
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得30
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
mcl应助科研通管家采纳,获得50
7秒前
orixero应助科研通管家采纳,获得10
7秒前
ania完成签到,获得积分10
7秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841351
求助须知:如何正确求助?哪些是违规求助? 3383439
关于积分的说明 10529854
捐赠科研通 3103519
什么是DOI,文献DOI怎么找? 1709323
邀请新用户注册赠送积分活动 823096
科研通“疑难数据库(出版商)”最低求助积分说明 773813