卤化物
自回归模型
生物系统
光致发光
材料科学
回归
随机森林
能量(信号处理)
相对湿度
人工智能
算法
计算机科学
机器学习
光电子学
统计
化学
数学
物理
无机化学
热力学
生物
作者
Meghna Srivastava,Abigail R. Hering,Yu An,Juan‐Pablo Correa‐Baena,Marina S. Leite
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2023-03-10
卷期号:8 (4): 1716-1722
被引量:19
标识
DOI:10.1021/acsenergylett.2c02555
摘要
The composition-dependent degradation of hybrid organic-inorganic perovskites (HOIPs) due to environmental stressors still precludes their commercialization. It is very difficult to quantify their behavior upon exposure to each stressor by exclusively using trial-and-error methods due to the high-dimensional parameter space involved. We implement machine learning (ML) models using high-throughput, in situ photoluminescence (PL) to predict the response of Cs y FA1-y Pb(Br x I1-x )3 while exposed to relative humidity cycles. We quantitatively compare three ML models while generating forecasts of environment-dependent PL responses: linear regression, echo state network, and seasonal autoregressive integrated moving average with exogenous regressor algorithms. We achieve accuracy of >90% for the latter, while tracking PL changes over a 50 h window. Samples with 17% of Cs content consistently showed a PL increase as a function of cycle. Our precise time-series forecasts can be extended to other HOIP families, illustrating the potential of data-centric approaches to accelerate material development for clean-energy devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI