Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging

医学 胶质瘤 无线电技术 磁共振成像 人工智能 机器学习 曲线下面积 放射科 内科学 计算机科学 癌症研究
作者
Guanjie Hu,Xin‐Hua Hu,Kun Yang,Yun Yu,Zijuan Jiang,Yong Liu,Dongming Liu,Xiao Hu,Hong Xiao,Yuanjie Zou,Yongping You,Hongyi Liu,Jiu Chen
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
被引量:4
标识
DOI:10.1097/rct.0000000000001386
摘要

Recurrence is a major factor in the poor prognosis of patients with glioma. The aim of this study was to predict glioma recurrence using machine learning based on radiomic features.We recruited 77 glioma patients, consisting of 57 newly diagnosed patients and 20 patients with recurrence. After extracting the radiomic features from T2-weighted images, the data set was randomly divided into training (58 patients) and testing (19 patients) cohorts. An automated machine learning method (the Tree-based Pipeline Optimization Tool) was applied to generate 10 independent recurrence prediction models. The final model was determined based on the area under the curve (AUC) and average specificity. Moreover, an independent validation set of 20 patients with glioma was used to verify the model performance.Recurrence in glioma patients was successfully predicting by machine learning using radiomic features. Among the 10 recurrence prediction models, the best model achieved an accuracy of 0.81, an AUC value of 0.85, and a specificity of 0.69 in the testing cohort, but an accuracy of 0.75 and an AUC value of 0.87 in the independent validation set.Our algorithm that is generated by machine learning exhibits promising power and may predict recurrence noninvasively, thereby offering potential value for the early development of interventions to delay or prevent recurrence in glioma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小兔子发布了新的文献求助10
刚刚
chem is try发布了新的文献求助20
1秒前
江东发布了新的文献求助10
1秒前
司空豁应助nanxu采纳,获得10
2秒前
2秒前
八卦巧克力完成签到,获得积分10
2秒前
光电很亮完成签到,获得积分10
2秒前
3秒前
慕辰完成签到,获得积分10
4秒前
英吉利25发布了新的文献求助10
4秒前
4秒前
元谷雪发布了新的文献求助10
4秒前
5秒前
5秒前
Pyrene完成签到,获得积分10
6秒前
6秒前
moxisi应助搬砖小土妞采纳,获得10
6秒前
6秒前
song发布了新的文献求助30
7秒前
8秒前
Ava应助砥砺采纳,获得10
8秒前
Vdali发布了新的文献求助10
8秒前
SevenKing完成签到,获得积分10
9秒前
李健的小迷弟应助张磊采纳,获得10
9秒前
9秒前
杰杰发布了新的文献求助10
9秒前
未命名完成签到,获得积分10
9秒前
怪胎完成签到,获得积分10
10秒前
10秒前
言无间发布了新的文献求助10
10秒前
11秒前
不过尔尔完成签到 ,获得积分10
11秒前
冰魂应助仪飞冲天小女警采纳,获得30
11秒前
11秒前
Ma发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
欧维完成签到,获得积分10
12秒前
青青发布了新的文献求助10
14秒前
小高完成签到 ,获得积分20
14秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3887917
求助须知:如何正确求助?哪些是违规求助? 3430205
关于积分的说明 10768868
捐赠科研通 3155127
什么是DOI,文献DOI怎么找? 1742315
邀请新用户注册赠送积分活动 841045
科研通“疑难数据库(出版商)”最低求助积分说明 785772