Hybrid data-driven and physics-informed regularized learning of cyclic plasticity with neural networks

人工神经网络 理论(学习稳定性) 可塑性 概化理论 算法 计算机科学 人工智能 应用数学 数学 机器学习 物理 统计 热力学
作者
Stefan Hildebrand,Sandra Klinge
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:5 (4): 045058-045058 被引量:6
标识
DOI:10.1088/2632-2153/ad95da
摘要

Abstract An extendable, efficient and explainable Machine Learning approach is proposed to represent cyclic plasticity and replace conventional material models based on the Radial Return Mapping algorithm. High accuracy and stability by means of a limited amount of training data is achieved by implementing physics-informed regularizations and the back stress information. The off-loading of the neural network (NN) is applied to the maximal extent. The proposed model architecture is simpler and more efficient compared to existing solutions from the literature using approximately only half the amount of NN parameters, while representing a complete three-dimensional material model. The validation of the approach is carried out by means of results obtained with the Armstrong–Frederick kinematic hardening model. The mean squared error is assumed as the loss function which stipulates several restrictions: deviatoric character of internal variables, compliance with the flow rule, the differentiation of elastic and plastic steps and the associativity of the flow rule. The latter, however, has a minor impact on the accuracy, which implies the generalizability of the model for a broad spectrum of evolution laws for internal variables. Numerical tests simulating several load cases are presented in detail. The validation shows cyclic stability and deviations in normal directions of less than 2% at peak values which is comparable to the order of measurement inaccuracies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mynbv完成签到,获得积分10
1秒前
天天快乐应助瘦瘦初珍采纳,获得10
3秒前
烟色晚空完成签到,获得积分10
3秒前
1a完成签到,获得积分20
3秒前
张nmky发布了新的文献求助10
3秒前
ccz发布了新的文献求助10
4秒前
今后应助zzy采纳,获得10
4秒前
4秒前
4秒前
Jessie完成签到,获得积分10
5秒前
xueyu发布了新的文献求助10
5秒前
英姑应助失眠的语薇采纳,获得10
5秒前
qqaeao完成签到,获得积分10
6秒前
6秒前
多亿点完成签到 ,获得积分10
6秒前
Cary完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
10秒前
双桅船发布了新的文献求助10
10秒前
spring079完成签到,获得积分10
11秒前
Mercy完成签到,获得积分10
11秒前
11秒前
11秒前
WYang发布了新的文献求助30
11秒前
冬天败发布了新的文献求助10
12秒前
13秒前
走不开不快乐完成签到 ,获得积分10
13秒前
乐乐应助淡淡的新之采纳,获得10
13秒前
独一无二发布了新的文献求助10
14秒前
玩具卡关注了科研通微信公众号
15秒前
星月相遂完成签到,获得积分10
15秒前
西门凡双完成签到,获得积分10
16秒前
怡然尔芙完成签到,获得积分10
16秒前
18秒前
zzy完成签到,获得积分10
18秒前
小鲨鱼发布了新的文献求助10
19秒前
双桅船完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556502
求助须知:如何正确求助?哪些是违规求助? 4641030
关于积分的说明 14664251
捐赠科研通 4583051
什么是DOI,文献DOI怎么找? 2513915
邀请新用户注册赠送积分活动 1488356
关于科研通互助平台的介绍 1459097