Prediction of Intensive Care Length of Stay for Surviving and Nonsurviving Patients Using Deep Learning

医学 标杆管理 一致性 重症监护室 重症监护 试验装置 急诊医学 人口 文档 重症监护医学 内科学 人工智能 计算机科学 环境卫生 营销 业务 程序设计语言
作者
Ludmila Brochini,Xinggang Liu,Louis Atallah,Pamela J. Amelung,Robin French,Omar Badawi
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/ccm.0000000000006588
摘要

Objectives: Length of stay (LOS) models support evaluating ICU care; however, current benchmarking models fail to consider differences in LOS between surviving and nonsurviving patients, which can lead to biased predictions toward the surviving population. We aim to develop a model addressing this as well as documentation bias to improve ICU benchmarking. Design: The Critical Care Outcomes Prediction Model (CCOPM) LOS uses patient characteristics, vitals, and laboratories during the first 24 hours of ICU admission to predict LOS in the hospital and ICU using a deep learning framework for modeling time to events with competing risk. Data was randomly divided into training, validation, and test (hold out) sets in a 2:1:1 ratio. Setting: Electronic ICU Research Institute database from participating tele-critical care programs. Patients: Six hundred sixty-nine thousand eight hundred seventy-six ICU admissions pertaining to 628,815 patients from 329 ICUs in 194 U.S. hospitals, from 2017 to 2019. Interventions: None. Measurements and Main Results: Model performance was assessed using the coefficient of determination ( R 2 ), concordance index, mean absolute error, and calibration. For individual stays in the test set, the ICU LOS model presented R 2 = 0.29 and 0.23 for surviving and nonsurviving populations, respectively, at the individual level and R 2 = 0.48 and 0.23 at the ICU level. Conversely, hospital LOS model presented R 2 = 0.46 and 0.52 at the individual level and R 2 = 0.71 and 0.64 at the ICU level. In the subset of the test set containing predictions from Acute Physiology and Chronic Health Evaluation (APACHE) IVb, R 2 of ICU LOS for surviving and nonsurviving populations was, respectively, 0.30 and 0.23 for the CCOPM and 0.16 and zero for APACHE IVb. For hospital LOS, the values were R 2 = 0.39 and 0.40 for the CCOPM and 0.27 and zero for APACHE IVb. Conclusions: This novel LOS model represents a step forward in achieving more equitable benchmarking across diverse ICU settings with varying risk profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orchid完成签到,获得积分10
刚刚
xun发布了新的文献求助10
1秒前
橘猫完成签到 ,获得积分10
4秒前
尊敬怀薇完成签到,获得积分10
5秒前
xjz240221完成签到 ,获得积分10
5秒前
科研通AI2S应助公西钧采纳,获得10
6秒前
剑影完成签到,获得积分10
7秒前
tian完成签到,获得积分10
7秒前
能HJY完成签到,获得积分10
8秒前
lmq完成签到 ,获得积分10
8秒前
奶糖喵完成签到 ,获得积分10
8秒前
支妙完成签到,获得积分10
9秒前
风中的西牛风吹得蛋颤完成签到,获得积分10
9秒前
华西招生版完成签到,获得积分10
9秒前
想人陪的万言完成签到,获得积分10
10秒前
狂吃五碗饭完成签到,获得积分10
12秒前
shenwei完成签到 ,获得积分10
13秒前
14秒前
14秒前
高高诗柳完成签到 ,获得积分10
14秒前
15秒前
linkezou完成签到,获得积分10
15秒前
公西钧完成签到,获得积分10
15秒前
zong240221完成签到 ,获得积分10
15秒前
幸福妙柏完成签到 ,获得积分10
17秒前
成就的南霜完成签到,获得积分10
17秒前
zzzyyyuuu完成签到 ,获得积分10
17秒前
11222浅发布了新的文献求助10
19秒前
美满的金连完成签到 ,获得积分10
19秒前
舒心靖琪完成签到 ,获得积分10
19秒前
CUREME完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
hm完成签到,获得积分10
22秒前
24秒前
zhuxd发布了新的文献求助10
27秒前
胡图完成签到,获得积分10
27秒前
Ethan完成签到,获得积分10
28秒前
巧克力完成签到 ,获得积分10
32秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801112
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330165
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807519
科研通“疑难数据库(出版商)”最低求助积分说明 763726