药品
细胞培养
医学
药物开发
细胞
心肌细胞
药理学
细胞生物学
化学
内科学
生物
生物化学
遗传学
作者
Yoon-Ju Na,Kyung Jin Choi,Won Hoon Jung,Sung Bum Park,Byumseok Koh,Kwang‐Lae Hoe,Ki Young Kim
出处
期刊:Tissue Engineering Part C-methods
[Mary Ann Liebert, Inc.]
日期:2025-02-06
标识
DOI:10.1089/ten.tec.2024.0292
摘要
Developing effective drug screening methods for type 2 diabetes requires physiologically relevant models. Traditional 2D cell cultures have limitations in replicating in vivo conditions, leading to challenges in assessing drug efficacy. To overcome these issues, we developed a 3D artificial muscle model that induces insulin resistance, a hallmark of type 2 diabetes. Using C2C12 myoblasts cultured in a scaffold of 1% alginate and 1 mg/mL collagen type 1, we optimized conditions for differentiation and structural stability. Insulin resistance was induced using palmitic acid (PA), and glucose uptake was assessed using the fluorescent glucose analog 2-NBDG. The 3D model demonstrated superior glucose uptake responses compared with 2D cultures, with a threefold increase in insulin-stimulated glucose uptake on days 4 and 8 of differentiation. Induced insulin resistance was observed with 0.1 mM PA, which maintained cell viability and differentiation capacity. The model was validated through comparative drug screening using rosiglitazone and metformin, as well as 165 candidate compounds provided by Korea Chemical Bank. Drug screening revealed that three out of five hit compounds identified in both 2D and 3D models exhibited greater efficacy in 3D cultures, with results consistent with ex vivo assays using mouse soleus muscle. This model closely mimics in vivo conditions, offering a robust platform for type 2 diabetes drug discovery while supporting ethical research practices.
科研通智能强力驱动
Strongly Powered by AbleSci AI