亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of machine learning in drug side effect prediction: databases, methods, and challenges

计算机科学 机器学习 数据库 人工智能 数据挖掘
作者
Haochen Zhao,Jian Zhong,Xiao Liang,Chenliang Xie,Shaokai Wang
出处
期刊:Frontiers of Computer Science [Higher Education Press]
卷期号:19 (5) 被引量:7
标识
DOI:10.1007/s11704-024-31063-0
摘要

Abstract Drug side effects have become paramount concerns in drug safety research, ranking as the fourth leading cause of mortality following cardiovascular diseases, cancer, and infectious diseases. Simultaneously, the widespread use of multiple prescription and over-the-counter medications by many patients in their daily lives has heightened the occurrence of side effects resulting from Drug-Drug Interactions (DDIs). Traditionally, assessments of drug side effects relied on resource-intensive and time-consuming laboratory experiments. However, recent advancements in bioinformatics and the rapid evolution of artificial intelligence technology have led to the accumulation of extensive biomedical data. Based on this foundation, researchers have developed diverse machine learning methods for discovering and detecting drug side effects. This paper provides a comprehensive overview of recent advancements in predicting drug side effects, encompassing the entire spectrum from biological data acquisition to the development of sophisticated machine learning models. The review commences by elucidating widely recognized datasets and Web servers relevant to the field of drug side effect prediction. Subsequently, The study delves into machine learning methods customized for binary, multi-class, and multi-label classification tasks associated with drug side effects. These methods are applied to a variety of representative computational models designed for identifying side effects induced by single drugs and DDIs. Finally, the review outlines the challenges encountered in predicting drug side effects using machine learning approaches and concludes by illuminating important future research directions in this dynamic field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
7秒前
13秒前
文献菜鸟完成签到 ,获得积分10
17秒前
29秒前
Michelangelo_微风完成签到,获得积分10
30秒前
33秒前
整齐的萝发布了新的文献求助10
39秒前
39秒前
火星上的天思完成签到,获得积分10
41秒前
隐形曼青应助Ultraman45采纳,获得10
41秒前
2311发布了新的文献求助30
43秒前
赝品也烂漫完成签到,获得积分10
48秒前
Asher完成签到,获得积分10
52秒前
57秒前
小胡爱科研完成签到 ,获得积分10
59秒前
003完成签到,获得积分10
1分钟前
1分钟前
duan完成签到 ,获得积分10
1分钟前
2311完成签到 ,获得积分20
1分钟前
2311关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
kento完成签到,获得积分0
1分钟前
fang完成签到,获得积分10
1分钟前
Tumumu完成签到,获得积分10
1分钟前
Li完成签到,获得积分10
1分钟前
fang发布了新的文献求助10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
英俊的铭应助lf采纳,获得10
1分钟前
1分钟前
lf发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Alice应助Magali采纳,获得80
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976643
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204613
捐赠科研通 3257484
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613