推进
材料科学
纳米技术
磁场
聚合物
磁性纳米粒子
仿生学
鞭毛
旋转磁场
天然聚合物
趋磁细菌
航空航天工程
工程类
复合材料
物理
细菌
纳米颗粒
冶金
生物
量子力学
磁铁矿
遗传学
作者
Liang Lü,Shuang Bai,Jiaqi Shi,Hutao Zhang,Gang Hou,Wei Wang,Shoubin Sun,Tian‐Yun Huang,Yuxin Jia,A. B. Granovsky,Perov Nikolai,Zhiguang Wu,Zhiguang Wu,He Wu
出处
期刊:Small methods
[Wiley]
日期:2025-01-21
卷期号:9 (4): e2401558-e2401558
标识
DOI:10.1002/smtd.202401558
摘要
Abstract Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template‐assisted layer‐by‐layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots. Geometric variables of the polymer microrobots, such as the diameter and wall thickness, can be controlled by selection of porous template and layers of assembly. The microrobots perform controllable propulsion through the manipulation of magnetic field. The comparative analysis of the movement behavior reveals that the deformation of microrobots may be attributed to the propulsion upon rotating magnetic field, which is similar to that of natural bacteria. The influence of actuation and frequency on the velocity of the microrobots is studied. Such polymer multilayer magnetic microrobots may provide a novel concept to develop rapidly delivering drug therapeutic agents for diverse practical biomedical uses.
科研通智能强力驱动
Strongly Powered by AbleSci AI