Offline Feature-Based Pricing Under Censored Demand: A Causal Inference Approach

特征(语言学) 推论 计算机科学 计量经济学 经济 因果推理 微观经济学 运筹学 人工智能 数学 语言学 哲学
作者
Jingwen Tang,Zhengling Qi,Ethan X. Fang,Cong Shi
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2024.1061
摘要

Problem definition: We study a feature-based pricing problem with demand censoring in an offline, data-driven setting. In this problem, a firm is endowed with a finite amount of inventory and faces a random demand that is dependent on the offered price and the features (from products, customers, or both). Any unsatisfied demand that exceeds the inventory level is lost and unobservable. The firm does not know the demand function but has access to an offline data set consisting of quadruplets of historical features, inventory, price, and potentially censored sales quantity. Our objective is to use the offline data set to find the optimal feature-based pricing rule so as to maximize the expected profit. Methodology/results: Through the lens of causal inference, we propose a novel data-driven algorithm that is motivated by survival analysis and doubly robust estimation. We derive a finite sample regret bound to justify the proposed offline learning algorithm and prove its robustness. Numerical experiments demonstrate the robust performance of our proposed algorithm in accurately estimating optimal prices on both training and testing data. Managerial implications: The work provides practitioners with an innovative modeling and algorithmic framework for the feature-based pricing problem with demand censoring through the lens of causal inference. Our numerical experiments underscore the value of considering demand censoring in the context of feature-based pricing. Funding: The research of E. X. Fang is partially supported by the National Science Foundation [Grants NSF DMS-2346292, NSF DMS-2434666] and the Whitehead Scholarship. The research of C. Shi is partially supported by the Amazon Research Award. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2024.1061 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
生动绫完成签到,获得积分10
1秒前
2秒前
快乐枫叶完成签到,获得积分10
3秒前
Gong发布了新的文献求助10
3秒前
3秒前
高兴的小完成签到,获得积分10
3秒前
SYLH应助philophysics采纳,获得10
4秒前
4秒前
4秒前
wanci应助qh5706采纳,获得10
5秒前
5秒前
zhan完成签到,获得积分10
6秒前
diudiu发布了新的文献求助10
7秒前
生动绫发布了新的文献求助10
8秒前
meo发布了新的文献求助200
8秒前
脑洞疼应助皓月孤烟采纳,获得10
9秒前
科研通AI2S应助12121313采纳,获得10
9秒前
Hannahlee发布了新的文献求助10
9秒前
BG发布了新的文献求助10
9秒前
mouxq发布了新的文献求助10
10秒前
fly the bike完成签到,获得积分10
10秒前
sweet完成签到,获得积分10
10秒前
11秒前
嘿嘿完成签到,获得积分10
12秒前
Akim应助喝口茶先别急采纳,获得10
13秒前
贺贺应助小德采纳,获得10
13秒前
14秒前
脑洞疼应助mmmmmagic采纳,获得10
14秒前
14秒前
15秒前
15秒前
拉宝了完成签到,获得积分10
16秒前
Lucas应助Hannahlee采纳,获得10
17秒前
善学以致用应助呆崽采纳,获得10
17秒前
17秒前
19秒前
大个应助tom采纳,获得10
19秒前
20秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897235
求助须知:如何正确求助?哪些是违规求助? 3441153
关于积分的说明 10820262
捐赠科研通 3166127
什么是DOI,文献DOI怎么找? 1749188
邀请新用户注册赠送积分活动 845187
科研通“疑难数据库(出版商)”最低求助积分说明 788492