AMFNet: Attention-Guided Multi-Scale Fusion Network for Bi-Temporal Change Detection in Remote Sensing Images

遥感 比例(比率) 计算机科学 变更检测 环境科学 人工智能 地质学 地图学 地理
作者
Zisen Zhan,Hongjin Ren,Min Xia,Haifeng Lin,Xiaoya Wang,Xin Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (10): 1765-1765 被引量:37
标识
DOI:10.3390/rs16101765
摘要

Change detection is crucial for evaluating land use, land cover changes, and sustainable development, constituting a significant component of Earth observation tasks. The difficulty in extracting features from high-resolution images, coupled with the complexity of image content, poses challenges for traditional change detection algorithms in terms of accuracy and applicability. The recent emergence of deep learning methods has led to substantial progress in the field of change detection. However, existing frameworks often involve the simplistic integration of bi-temporal features in specific areas, lacking the fusion of temporal information and semantic details in the images. In this paper, we propose an attention-guided multi-scale fusion network (AMFNet), which effectively integrates bi-temporal image features and diverse semantics at both the encoding and decoding stages. AMFNet utilizes a unique attention-guided mechanism to dynamically adjust feature fusion, enhancing adaptability and accuracy in change detection tasks. Our method intelligently incorporates temporal information into the deep learning model, considering the temporal dependency inherent in these tasks. We decode based on an interactive feature map, which improves the model’s understanding of evolving patterns over time. Additionally, we introduce multi-level supervised training to facilitate the learning of fused features across multiple scales. In comparison with different algorithms, our proposed method achieves F1 values of 0.9079, 0.8225, and 0.8809 in the LEVIR-CD, GZ-CD, and SYSU-CD datasets, respectively. Our model outperforms the SOTA model, SAGNet, by 0.69% in terms of F1 and 1.15% in terms of IoU on the LEVIR-CD dataset, by 2.8% in terms of F1 and 1.79% in terms of IoU on the GZ-CD dataset, and by 0.54% in terms of F1 and 0.38% in terms of IoU on the SYSU-CD dataset. The method proposed in this study can be applied to various complex scenarios, establishing a change detection method with strong model generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的菲鹰完成签到,获得积分10
刚刚
1秒前
PP发布了新的文献求助20
1秒前
1秒前
小马甲应助123采纳,获得10
2秒前
yagen完成签到,获得积分10
3秒前
搜集达人应助Silvia采纳,获得10
3秒前
孟孟孟完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
搜集达人应助孤独的傲蕾采纳,获得10
3秒前
碧琴完成签到,获得积分10
4秒前
哆啦小奶龙完成签到,获得积分10
4秒前
完好完成签到,获得积分10
4秒前
4秒前
Tanxaio发布了新的文献求助10
5秒前
5秒前
5秒前
友好从凝关注了科研通微信公众号
5秒前
Arslan完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
容容容完成签到,获得积分10
7秒前
7秒前
7秒前
猕猴桃发布了新的文献求助10
8秒前
8秒前
123完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
yangqi发布了新的文献求助10
9秒前
李健的小迷弟应助张花花采纳,获得30
10秒前
坚定芷烟发布了新的文献求助10
10秒前
Lee发布了新的文献求助10
10秒前
小西瓜完成签到,获得积分20
10秒前
追风发布了新的文献求助10
10秒前
11秒前
123发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546619
求助须知:如何正确求助?哪些是违规求助? 4632425
关于积分的说明 14626866
捐赠科研通 4574039
什么是DOI,文献DOI怎么找? 2508073
邀请新用户注册赠送积分活动 1484624
关于科研通互助平台的介绍 1455784