LncRNA Expression Profile-Based Matrix Factorization for Predicting lncRNA- Disease Association

矩阵分解 计算机科学 表达式(计算机科学) 因式分解 非负矩阵分解 计算生物学 算法 生物 物理 量子力学 特征向量 程序设计语言
作者
Jihwan Ha
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 70297-70304 被引量:8
标识
DOI:10.1109/access.2024.3401005
摘要

Long non-coding RNAs (lncRNAs) play significant roles in multiple biological processes and contribute to the progression and development of various human diseases. Therefore, it is necessary to decipher novel lncRNA-disease associations from the perspective of biomarker detection. Numerous computational models have been designed to identify lncRNA-disease associations using machine learning. However, many of these models fail to effectively incorporate heterogeneous biological datasets, which can lead to reduced model accuracy and performance. In this study, we propose a novel lncRNA expression profile-based matrix factorization method that applies lncRNA expression profiles to identify lncRNA-disease associations (EMFLDA). Matrix factorization is a machine learning method that exhibits excellent performance not only in recommender systems, but also in various scientific areas. We also applied lncRNA expression profiles as weights for the proposed model, which allowed for the integration of heterogeneous information and thereby improved performance. As a result, EMFLDA outperformed the four previous models in terms of AUC scores, achieving scores of 0.9042 and 0.8841 based on leave-one-out cross-validation and five-fold cross-validation, respectively. Thus, the proposed model, EMFLDA, not only serves as an effective tool for identifying disease-related lncRNAs, but also plays a pivotal role in extracting disease biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
无限的千凝完成签到 ,获得积分10
9秒前
9秒前
老秦发布了新的文献求助10
12秒前
kyJYbs发布了新的文献求助10
15秒前
16秒前
无奈芸应助文件撤销了驳回
21秒前
23秒前
在水一方应助无处不在采纳,获得10
24秒前
32秒前
orixero应助勤劳的鹤轩采纳,获得30
34秒前
34秒前
yuan完成签到,获得积分10
35秒前
ncwgx完成签到,获得积分10
37秒前
37秒前
physicalproblem完成签到,获得积分10
39秒前
焰火青年发布了新的文献求助30
40秒前
沐风驳回了cai应助
40秒前
44秒前
45秒前
45秒前
霸气的匕完成签到 ,获得积分10
45秒前
勤劳的鹤轩完成签到,获得积分10
46秒前
桐桐完成签到,获得积分0
47秒前
无处不在发布了新的文献求助10
49秒前
Rafayel发布了新的文献求助10
50秒前
50秒前
56秒前
1分钟前
油菜花完成签到,获得积分10
1分钟前
1分钟前
枫叶荻花完成签到 ,获得积分10
1分钟前
领导范儿应助图图采纳,获得20
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
景景好完成签到,获得积分10
1分钟前
家妙彤发布了新的文献求助30
1分钟前
FashionBoy应助tw007007采纳,获得10
1分钟前
曲奇发布了新的文献求助10
1分钟前
A_Caterpillar完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777983
求助须知:如何正确求助?哪些是违规求助? 3323609
关于积分的说明 10215097
捐赠科研通 3038781
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315