益生菌
某种肠道细菌
食品科学
化学
消化(炼金术)
生物
生物化学
细菌
色谱法
肠道菌群
遗传学
作者
Mariana Fonseca,Rita Vedor,Joana Cristina Barbosa,Ana Gomes,Daniela Machado
标识
DOI:10.1016/j.lwt.2024.116187
摘要
In the present study, next generation probiotic Akkermansia muciniphila was incorporated into a dairy matrix containing Portuguese whey cheese and Greek-style yoghurt in a proportion of 3.5:1, respectively. Subsequently, this innovative food was characterized in terms of microbiological and physicochemical parameters, total phenolic content and antioxidant, antidiabetic, and antihypertensive activities, as well as its protective effect on A. muciniphila viability during 21 d of refrigerated aerobic storage and when subjected to simulated gastrointestinal passage. The probiotic cheese spread displayed high microbiological quality, low total phenolic content (0.36 mg gallic acid equivalents/g of dried cheese) and interesting biological activities, including antidiabetic (98.10% α-glucosidase inhibition) and antihypertensive (49.18% angiotensin converting enzyme inhibition). Simultaneously, this food ensured a high A. muciniphila viability (>108 CFU/g) during 21 d of refrigerated aerobic storage with subsequent in vitro digestion. Additionally, this probiotic cheese presented a similar profile in terms of texture, color, water activity and pH when compared to the cheese control (without A. muciniphila), suggesting a potentially high acceptance among consumers. In conclusion, the developed cheese spread seems to be a promising and suitable food vector to safeguard A. muciniphila viability during refrigerated aerobic storage for at least 21 d with subsequent gastrointestinal passage.
科研通智能强力驱动
Strongly Powered by AbleSci AI