Fragment-Fusion Transformer: Deep Learning-Based Discretization Method for Continuous Single-Cell Raman Spectral Analysis

模式识别(心理学) 人工智能 融合 计算机科学 特征提取 生物系统 离散化 变压器 拉曼光谱 数学 物理 电压 光学 数学分析 哲学 生物 量子力学 语言学
作者
Qiang Yu,Xiaokun Shen,Langlang Yi,Minghui Liang,Guoqian Li,Zhihui Guan,Xiaoyao Wu,Hélène Castel,Bo Hu,Pengju Yin,Wenbo Zhang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (8): 3907-3920 被引量:1
标识
DOI:10.1021/acssensors.4c00149
摘要

Raman spectroscopy has become an important single-cell analysis tool for monitoring biochemical changes at the cellular level. However, Raman spectral data, typically presented as continuous data with high-dimensional characteristics, is distinct from discrete sequences, which limits the application of deep learning-based algorithms in data analysis due to the lack of discretization. Herein, a model called fragment-fusion transformer is proposed, which integrates the discrete fragmentation of continuous spectra based on their intrinsic characteristics with the extraction of intrafragment features and the fusion of interfragment features. The model integrates the intrinsic feature-based fragmentation of spectra with transformer, constructing the fragment transformer block for feature extraction within fragments. Interfragment information is combined through the pyramid design structure to improve the model's receptive field and fully exploit the spectral properties. During the pyramidal fusion process, the information gain of the final extracted features in the spectrum has been enhanced by a factor of 9.24 compared to the feature extraction stage within the fragment, and the information entropy has been enhanced by a factor of 13. The fragment-fusion transformer achieved a spectral recognition accuracy of 94.5%, which is 4% higher compared to the method without fragmentation and fusion processes on the test set of cell Raman spectroscopy identification experiments. In comparison to common spectral classification models such as KNN, SVM, logistic regression, and CNN, fragment-fusion transformer has achieved 4.4% higher accuracy than the best-performing CNN model. Fragment-fusion transformer method has the potential to serve as a general framework for discretization in the field of continuous spectral data analysis and as a research tool for analyzing the intrinsic information within spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
忐忑的舞蹈完成签到 ,获得积分10
4秒前
5秒前
小鼠星球发布了新的文献求助30
5秒前
刘丽梅发布了新的文献求助10
6秒前
dungaway发布了新的文献求助10
6秒前
Dr_Zhu完成签到,获得积分10
8秒前
meihui完成签到 ,获得积分10
8秒前
8秒前
8秒前
852应助冷酷的柜门采纳,获得10
11秒前
汉堡包应助Felixsun采纳,获得10
11秒前
wanci应助藏鸟采纳,获得10
12秒前
12秒前
12秒前
h123发布了新的文献求助30
13秒前
13秒前
深情安青应助九思采纳,获得10
15秒前
糊涂的冰菱完成签到,获得积分10
16秒前
花花123发布了新的文献求助10
16秒前
完美世界应助阔达摩托采纳,获得10
17秒前
18秒前
18秒前
小小发布了新的文献求助10
18秒前
forever发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
WW发布了新的文献求助10
19秒前
20秒前
22秒前
毛毛完成签到 ,获得积分10
23秒前
默默毛豆发布了新的文献求助10
23秒前
沉醉夜色发布了新的文献求助10
23秒前
万能图书馆应助吃猫的鱼采纳,获得10
25秒前
852应助h123采纳,获得10
25秒前
xu发布了新的文献求助10
25秒前
Lliu完成签到,获得积分10
26秒前
李健应助尺素寸心采纳,获得10
26秒前
bias完成签到,获得积分10
27秒前
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454169
求助须知:如何正确求助?哪些是违规求助? 4561592
关于积分的说明 14282986
捐赠科研通 4485543
什么是DOI,文献DOI怎么找? 2456809
邀请新用户注册赠送积分活动 1447428
关于科研通互助平台的介绍 1422808