Discovering dynamic laws from observations: The case of self-propelled, interacting colloids

活性物质 布朗运动 统计物理学 布朗动力学 现象学(哲学) 经典力学 物理 朗之万动力 杰纳斯粒子 朗之万方程 杰纳斯 计算机科学 量子力学 认识论 细胞生物学 生物 哲学 程序设计语言
作者
Miguel Ruiz-García,Celia Gutiérrez,Lachlan C. Alexander,Dirk G. A. L. Aarts,Luca M. Ghiringhelli,Chantal Valeriani
出处
期刊:Physical review [American Physical Society]
卷期号:109 (6): 064611-064611 被引量:12
标识
DOI:10.1103/physreve.109.064611
摘要

Active matter spans a wide range of time and length scales, from groups of cells and synthetic self-propelled colloids to schools of fish and flocks of birds. The theoretical framework describing these systems has shown tremendous success in finding universal phenomenology. However, further progress is often burdened by the difficulty of determining forces controlling the dynamics of individual elements within each system. Accessing this local information is pivotal for the understanding of the physics governing an ensemble of active particles and for the creation of numerical models capable of explaining the observed collective phenomena. In this work, we present ActiveNet, a machine-learning tool consisting of a graph neural network that uses the collective motion of particles to learn active and two-body forces controlling their individual dynamics. We verify our approach using numerical simulations of active Brownian particles, active particles undergoing underdamped Langevin dynamics, and chiral active Brownian particles considering different interaction potentials and values of activity. Interestingly, ActiveNet can equally learn conservative or nonconservative forces as well as torques. Moreover, ActiveNet has proven to be a useful tool to learn the stochastic contribution to the forces, enabling the estimation of the diffusion coefficients. Therefore, all coefficients of the equation of motion of Active Brownian Particles are captured. Finally, we apply ActiveNet to experiments of electrophoretic Janus particles, extracting the active and two-body forces controlling colloids' dynamics. On the one side, we have learned that the active force depends on the electric field and area fraction. On the other side, we have also discovered a dependence of the two-body interaction with the electric field that leads us to propose that the dominant force between active colloids is a screened electrostatic interaction with a constant length scale. We believe that the proposed methodological tool, ActiveNet, might open a new avenue for the study and modeling of experimental suspensions of active particles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果忆秋完成签到 ,获得积分10
1秒前
归途的羔羊完成签到,获得积分10
2秒前
支雨泽完成签到,获得积分10
2秒前
QS完成签到,获得积分10
2秒前
zhang完成签到 ,获得积分10
2秒前
灰白完成签到,获得积分10
3秒前
浮游应助jjqzju采纳,获得10
4秒前
ccx完成签到,获得积分10
5秒前
争气完成签到 ,获得积分10
6秒前
6秒前
包容雪卉完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
wahah完成签到,获得积分10
7秒前
飞飞完成签到,获得积分10
9秒前
lixiao1912发布了新的文献求助30
9秒前
sjw525完成签到,获得积分10
10秒前
HCZN完成签到,获得积分10
10秒前
可爱的小福宝完成签到,获得积分10
10秒前
帅气的祥完成签到,获得积分10
12秒前
霸气师完成签到 ,获得积分10
12秒前
文献小白完成签到 ,获得积分10
13秒前
排骨炖豆角完成签到,获得积分10
13秒前
bonjourqiao完成签到,获得积分10
15秒前
gaga完成签到,获得积分10
16秒前
英姑应助KRD采纳,获得10
18秒前
郭志倩完成签到 ,获得积分10
20秒前
阿呸完成签到,获得积分10
21秒前
MINGXING完成签到,获得积分10
22秒前
wp4455777完成签到,获得积分10
23秒前
知性的觅露完成签到,获得积分10
25秒前
心悦SCI完成签到,获得积分10
27秒前
WY完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
三三完成签到 ,获得积分10
29秒前
老迟到的幼枫完成签到,获得积分10
30秒前
Ava应助科研通管家采纳,获得10
32秒前
BowieHuang应助科研通管家采纳,获得10
32秒前
32秒前
持卿应助科研通管家采纳,获得10
32秒前
正己化人应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555208
求助须知:如何正确求助?哪些是违规求助? 4639804
关于积分的说明 14656805
捐赠科研通 4581829
什么是DOI,文献DOI怎么找? 2512972
邀请新用户注册赠送积分活动 1487643
关于科研通互助平台的介绍 1458706