Brain-Machine Coupled Learning Method for Facial Emotion Recognition

计算机科学 人工智能 认知 脑电图 机器学习 面部表情 模式识别(心理学) 解码方法 过程(计算) 领域知识 人工神经网络 语音识别 心理学 神经科学 电信 操作系统 精神科
作者
Dongjun Liu,Weichen Dai,Hangkui Zhang,Xuanyu Jin,Jianting Cao,Wanzeng Kong
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10703-10717 被引量:52
标识
DOI:10.1109/tpami.2023.3257846
摘要

Neural network models of machine learning have shown promising prospects for visual tasks, such as facial emotion recognition (FER). However, the generalization of the model trained from a dataset with a few samples is limited. Unlike the machine, the human brain can effectively realize the required information from a few samples to complete the visual tasks. To learn the generalization ability of the brain, in this article, we propose a novel brain-machine coupled learning method for facial emotion recognition to let the neural network learn the visual knowledge of the machine and cognitive knowledge of the brain simultaneously. The proposed method utilizes visual images and electroencephalogram (EEG) signals to couple training the models in the visual and cognitive domains. Each domain model consists of two types of interactive channels, common and private. Since the EEG signals can reflect brain activity, the cognitive process of the brain is decoded by a model following reverse engineering. Decoding the EEG signals induced by the facial emotion images, the common channel in the visual domain can approach the cognitive process in the cognitive domain. Moreover, the knowledge specific to each domain is found in each private channel using an adversarial strategy. After learning, without the participation of the EEG signals, only the concatenation of both channels in the visual domain is used to classify facial emotion images based on the visual knowledge of the machine and the cognitive knowledge learned from the brain. Experiments demonstrate that the proposed method can produce excellent performance on several public datasets. Further experiments show that the proposed method trained from the EEG signals has good generalization ability on new datasets and can be applied to other network models, illustrating the potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助叶宇豪采纳,获得10
刚刚
清秀灵薇发布了新的文献求助10
刚刚
1秒前
匿名应助lzy采纳,获得30
1秒前
Lekai发布了新的文献求助10
1秒前
拉圈最菜妮厨完成签到,获得积分10
1秒前
CodeCraft应助Zzz采纳,获得10
1秒前
1秒前
苔原猫咪甜甜圈完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
WEE发布了新的文献求助10
3秒前
aga发布了新的文献求助10
3秒前
俯冲食堂发布了新的文献求助10
4秒前
可爱的函函应助家养小羊采纳,获得10
4秒前
4秒前
5秒前
菲菲留下了新的社区评论
5秒前
柚子完成签到,获得积分10
5秒前
李青荣完成签到,获得积分10
5秒前
5秒前
多多完成签到,获得积分10
5秒前
Jayem完成签到,获得积分10
6秒前
小枫不学医完成签到 ,获得积分10
6秒前
晶晶发布了新的文献求助10
6秒前
6秒前
typpppp发布了新的文献求助10
7秒前
Daisy发布了新的文献求助10
7秒前
XZX完成签到,获得积分10
7秒前
kkkk发布了新的文献求助10
7秒前
7秒前
7秒前
YM完成签到,获得积分10
8秒前
ubiqutin完成签到,获得积分20
8秒前
Xzj发布了新的文献求助10
9秒前
ubiqutin发布了新的文献求助10
10秒前
希望天下0贩的0应助JPH1990采纳,获得30
11秒前
linmiu完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647599
求助须知:如何正确求助?哪些是违规求助? 4773824
关于积分的说明 15040250
捐赠科研通 4806401
什么是DOI,文献DOI怎么找? 2570250
邀请新用户注册赠送积分活动 1527084
关于科研通互助平台的介绍 1486162