已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brain-Machine Coupled Learning Method for Facial Emotion Recognition

计算机科学 人工智能 认知 脑电图 机器学习 面部表情 模式识别(心理学) 解码方法 过程(计算) 领域知识 人工神经网络 语音识别 心理学 神经科学 电信 操作系统 精神科
作者
Dongjun Liu,Weichen Dai,Hangkui Zhang,Xuanyu Jin,Jianting Cao,Wanzeng Kong
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 10703-10717 被引量:52
标识
DOI:10.1109/tpami.2023.3257846
摘要

Neural network models of machine learning have shown promising prospects for visual tasks, such as facial emotion recognition (FER). However, the generalization of the model trained from a dataset with a few samples is limited. Unlike the machine, the human brain can effectively realize the required information from a few samples to complete the visual tasks. To learn the generalization ability of the brain, in this article, we propose a novel brain-machine coupled learning method for facial emotion recognition to let the neural network learn the visual knowledge of the machine and cognitive knowledge of the brain simultaneously. The proposed method utilizes visual images and electroencephalogram (EEG) signals to couple training the models in the visual and cognitive domains. Each domain model consists of two types of interactive channels, common and private. Since the EEG signals can reflect brain activity, the cognitive process of the brain is decoded by a model following reverse engineering. Decoding the EEG signals induced by the facial emotion images, the common channel in the visual domain can approach the cognitive process in the cognitive domain. Moreover, the knowledge specific to each domain is found in each private channel using an adversarial strategy. After learning, without the participation of the EEG signals, only the concatenation of both channels in the visual domain is used to classify facial emotion images based on the visual knowledge of the machine and the cognitive knowledge learned from the brain. Experiments demonstrate that the proposed method can produce excellent performance on several public datasets. Further experiments show that the proposed method trained from the EEG signals has good generalization ability on new datasets and can be applied to other network models, illustrating the potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hu发布了新的文献求助10
刚刚
那种完成签到,获得积分10
刚刚
Savannah发布了新的文献求助10
1秒前
merry6669完成签到,获得积分10
2秒前
SiriHow完成签到,获得积分10
2秒前
Lucas应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
runner完成签到,获得积分10
7秒前
9秒前
小马甲应助mumumuzzz采纳,获得10
12秒前
杨蒙博完成签到 ,获得积分10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
酷波er应助Savannah采纳,获得10
13秒前
芒果西米露完成签到 ,获得积分10
16秒前
17秒前
17秒前
俭朴山灵完成签到 ,获得积分10
17秒前
大大怪完成签到,获得积分10
18秒前
李思超完成签到 ,获得积分10
21秒前
温馨发布了新的文献求助10
21秒前
hu发布了新的文献求助10
22秒前
monster完成签到 ,获得积分10
26秒前
星辰大海应助黄小柒采纳,获得10
28秒前
zp19877891完成签到,获得积分10
32秒前
32秒前
没有昵称完成签到 ,获得积分10
32秒前
鳗鱼捕完成签到,获得积分10
35秒前
Hodlumm发布了新的文献求助10
37秒前
务实的一斩完成签到 ,获得积分10
38秒前
倩倩完成签到 ,获得积分10
38秒前
40秒前
酷波er应助鳗鱼捕采纳,获得10
40秒前
41秒前
41秒前
lx123发布了新的文献求助80
42秒前
chinajsyjf完成签到,获得积分10
43秒前
43秒前
wudilaoren发布了新的文献求助10
44秒前
找不到气得跳脚完成签到 ,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5821792
求助须知:如何正确求助?哪些是违规求助? 5977341
关于积分的说明 15558057
捐赠科研通 4943240
什么是DOI,文献DOI怎么找? 2662520
邀请新用户注册赠送积分活动 1608715
关于科研通互助平台的介绍 1563613