Graph Contrastive Learning With Adaptive Proximity-Based Graph Augmentation

计算机科学 图形 理论计算机科学 特征学习 人工智能 编码器 机器学习 操作系统
作者
Wei Zhuo,Guang Tan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2023.3278183
摘要

Graph neural networks (GNNs) have been successful in a variety of graph-based applications. Recently, it is shown that capturing long-range relationships between nodes helps improve the performance of GNNs. The phenomenon is mostly confirmed in a supervised learning setting. In this article, inspired by contrastive learning (CL), we propose an unsupervised learning pipeline, in which different types of long-range similarity information are injected into the GNN model in an efficient way. We reconstruct the original graph in feature and topology spaces to generate three augmented views. During training, our model alternately picks an augmented view, and maximizes an agreement between the representations of the view and the original graph. Importantly, we identify the issue of diminishing utility of the augmented views as the model gradually learns useful information from the views. Hence, we propose a view update scheme that adaptively adjusts the augmented views, so that the views can continue to provide new information that helps with CL. The updated augmented views and the original graph are jointly used to train a shared GNN encoder by optimizing an efficient channel-level contrastive objective. We conduct extensive experiments on six assortative graphs and three disassortative graphs, which demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助vv采纳,获得10
1秒前
2秒前
舒服的鱼完成签到 ,获得积分10
2秒前
龙猫抱枕完成签到,获得积分10
3秒前
丘比特应助汎影采纳,获得10
7秒前
机智的紫丝完成签到,获得积分10
8秒前
8秒前
xxxHolic41完成签到,获得积分10
12秒前
ding应助汎影采纳,获得10
15秒前
杨柳依依完成签到,获得积分10
17秒前
KX2024完成签到,获得积分10
18秒前
LEETHEO发布了新的文献求助10
19秒前
22秒前
英姑应助汎影采纳,获得10
24秒前
sad完成签到,获得积分10
25秒前
25秒前
缓慢的豌豆完成签到 ,获得积分10
26秒前
loulan完成签到,获得积分10
27秒前
28秒前
30秒前
31秒前
随机昵称发布了新的文献求助10
31秒前
Akim应助11632采纳,获得10
34秒前
34秒前
safari完成签到 ,获得积分10
34秒前
猪猪hero发布了新的文献求助10
36秒前
ceeray23发布了新的文献求助20
36秒前
CodeCraft应助汎影采纳,获得10
37秒前
39秒前
Jay发布了新的文献求助10
41秒前
Duduk完成签到 ,获得积分10
42秒前
随机昵称完成签到,获得积分20
43秒前
科研通AI5应助乱武采纳,获得10
44秒前
45秒前
45秒前
充电宝应助疯狂的冬瓜采纳,获得10
45秒前
英姑应助汎影采纳,获得10
46秒前
宋正平完成签到,获得积分10
48秒前
11632发布了新的文献求助10
49秒前
深情安青应助王蔚染采纳,获得10
49秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785695
求助须知:如何正确求助?哪些是违规求助? 3331153
关于积分的说明 10250274
捐赠科研通 3046583
什么是DOI,文献DOI怎么找? 1672134
邀请新用户注册赠送积分活动 801008
科研通“疑难数据库(出版商)”最低求助积分说明 759970