亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel FMEA approach based on probabilistic linguistic best-worst method and TOPSIS with application to marine diesel fuel injection system

托普西斯 失效模式及影响分析 柴油 概率逻辑 计算机科学 可靠性工程 风险分析(工程) 柴油机 运筹学 汽车工程 工程类 人工智能 业务
作者
Qingguo Shi,Yihuai Hu,Guohua Yan
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (3): 3835-3854 被引量:3
标识
DOI:10.3233/jifs-230870
摘要

The failure mode and effect analysis (FMEA) is an effective tool to analyze risks and potential effects of complex systems, and it is one of the most widely used risk analysis methods for complex systems as there often exists various factors that could affect the operation of the complex systems. Conventional FMEA methods have been limited to using crisp values to represent the assessments, which has been criticized for having many deficiencies. Marine diesel fuel injection system is an important part of marine diesel engine, and its failure could directly affect the performance of the marine diesel engine and even impact the safe operation of the ship. However, little attention has been paid to the FMEA of the marine diesel fuel injection system. To this end, this paper presents a novel FMEA method based on the best-worst method (BWM) and TOPSIS method with probabilistic linguistic term set (PLTS). Firstly, the PLTS is used to represent the uncertain and linguistic judgments of experts. Then, the BWM is extended with PLTS to determine the weights of different elements for FMEA, and the TOPSIS is extended with PLTS to assess and rank different failure modes. Finally, a case study on marine diesel fuel injection is presented, and the most critical failures are identified for improvement measures. The results show that the proposed method could help managers and engineerings identify the most important failure modes for marine diesel fuel injection system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
lalala完成签到,获得积分10
19秒前
19秒前
充电宝应助ww960517采纳,获得10
20秒前
29秒前
深情的凝芙完成签到,获得积分10
33秒前
34秒前
谨慎颜演完成签到 ,获得积分10
34秒前
36秒前
39秒前
40秒前
Hello应助紧张的南风采纳,获得10
41秒前
888发布了新的文献求助10
42秒前
小蘑菇应助888采纳,获得10
49秒前
丘比特应助科研通管家采纳,获得10
50秒前
巨巨巨巨会给鼠鼠灌胃完成签到,获得积分10
51秒前
55秒前
四斤瓜完成签到 ,获得积分10
57秒前
oleskarabach发布了新的文献求助10
57秒前
这橘不甜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Owen应助赶路人采纳,获得10
1分钟前
古月完成签到,获得积分10
1分钟前
haoliu完成签到,获得积分10
1分钟前
2分钟前
枳着发布了新的文献求助10
2分钟前
yuki发布了新的文献求助10
2分钟前
YangSihan发布了新的文献求助20
2分钟前
2分钟前
888发布了新的文献求助10
2分钟前
2分钟前
Lucas应助888采纳,获得10
2分钟前
77发布了新的文献求助10
2分钟前
霸气凝云完成签到 ,获得积分10
2分钟前
子郁完成签到 ,获得积分10
2分钟前
2分钟前
YangSihan完成签到,获得积分10
2分钟前
2分钟前
77完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784786
求助须知:如何正确求助?哪些是违规求助? 3330050
关于积分的说明 10244063
捐赠科研通 3045364
什么是DOI,文献DOI怎么找? 1671645
邀请新用户注册赠送积分活动 800524
科研通“疑难数据库(出版商)”最低求助积分说明 759483