ChatGPT in medical imaging higher education

印为红字的 作弊 学术诚信 计算机科学 医学教育 心理学 数学教育 人工智能 医学 图书馆学 社会心理学
作者
Geoffrey Currie,C. Singh,T. S. Nelson,Caroline Nabasenja,Yazan Al‐Hayek,Kelly Spuur
出处
期刊:Radiography [Elsevier BV]
卷期号:29 (4): 792-799 被引量:96
标识
DOI:10.1016/j.radi.2023.05.011
摘要

Academic integrity among radiographers and nuclear medicine technologists/scientists in both higher education and scientific writing has been challenged by advances in artificial intelligence (AI). The recent release of ChatGPT, a chatbot powered by GPT-3.5 capable of producing accurate and human-like responses to questions in real-time, has redefined the boundaries of academic and scientific writing. These boundaries require objective evaluation.ChatGPT was tested against six subjects across the first three years of the medical radiation science undergraduate course for both exams (n = 6) and written assignment tasks (n = 3). ChatGPT submissions were marked against standardised rubrics and results compared to student cohorts. Submissions were also evaluated by Turnitin for similarity and AI scores.ChatGPT powered by GPT-3.5 performed below the average student performance in all written tasks with an increasing disparity as subjects advanced. ChatGPT performed better than the average student in foundation or general subject examinations where shallow responses meet learning outcomes. For discipline specific subjects, ChatGPT lacked the depth, breadth, and currency of insight to provide pass level answers.ChatGPT simultaneously poses a risk to academic integrity in writing and assessment while affording a tool for enhanced learning environments. These risks and benefits are likely to be restricted to learning outcomes of lower taxonomies. Both risks and benefits are likely to be constrained by higher order taxonomies.ChatGPT powered by GPT3.5 has limited capacity to support student cheating, introduces errors and fabricated information, and is readily identified by software as AI generated. Lack of depth of insight and appropriateness for professional communication also limits capacity as a learning enhancement tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XIEMIN发布了新的文献求助10
1秒前
tao发布了新的文献求助10
1秒前
小李完成签到 ,获得积分20
1秒前
热心市民小红花应助旦皋采纳,获得10
1秒前
bkagyin应助sdl采纳,获得10
2秒前
3秒前
gfhdf发布了新的文献求助10
4秒前
艺术家脾气完成签到,获得积分10
4秒前
6秒前
Li完成签到,获得积分10
7秒前
8秒前
兴奋静珊完成签到,获得积分10
9秒前
liuyiduo发布了新的文献求助10
9秒前
5433发布了新的文献求助10
9秒前
HUO发布了新的文献求助10
9秒前
小宇子发布了新的文献求助10
11秒前
12秒前
大个应助熬夜薯条采纳,获得10
13秒前
13秒前
抽烟不完成签到 ,获得积分10
13秒前
14秒前
15秒前
东莨菪碱完成签到,获得积分10
16秒前
健忘蘑菇完成签到,获得积分10
17秒前
Jasper应助莫小烦采纳,获得10
17秒前
兴奋静珊发布了新的文献求助10
17秒前
sdl发布了新的文献求助10
17秒前
showmaker发布了新的文献求助10
18秒前
俞若枫完成签到,获得积分10
20秒前
阿北发布了新的文献求助10
20秒前
科研通AI2S应助XIEMIN采纳,获得10
20秒前
熬夜薯条完成签到,获得积分10
21秒前
Mzo发布了新的文献求助10
21秒前
大个应助showmaker采纳,获得10
23秒前
24秒前
24秒前
26秒前
dfghjkl完成签到 ,获得积分10
26秒前
27秒前
东莨菪碱发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939395
求助须知:如何正确求助?哪些是违规求助? 3485450
关于积分的说明 11032919
捐赠科研通 3215256
什么是DOI,文献DOI怎么找? 1777156
邀请新用户注册赠送积分活动 863312
科研通“疑难数据库(出版商)”最低求助积分说明 798806