Remaining Useful Life Prediction via Improved CNN, GRU and Residual Attention Mechanism With Soft Thresholding

残余物 计算机科学 阈值 人工智能 机制(生物学) 模式识别(心理学) 计算机视觉 算法 物理 图像(数学) 量子力学
作者
Lijie Zhang,Bin Wang,Xiaoming Yuan,Pengfei Liang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (15): 15178-15190 被引量:36
标识
DOI:10.1109/jsen.2022.3185161
摘要

Accurate prediction of the remaining useful life (RUL) of mechanical equipment has brought benefits of the company's reasonable maintenance. However, in real industrial applications, owing to the change of working conditions and the interference of environment noise, it is of great difficulty to extract useful features from the collected signals, making it quite challenging to achieve high-precision RUL prediction of mechanical equipment. In order to overcome these issues, a new high-precision prediction method based on improved convolutional neural network (ICNN), residual attention mechanism with soft thresholding and gated recurrent unit (GRU) is proposed in this paper. To begin with, this method solves the limitations of manual feature extraction and makes the extracted feature representation more obvious by integrating one-dimensional depth separable convolution neural network and two-dimensional transpose convolution neural network. Then, soft thresholding and residual connection is inserted into the attention mechanism to help improve the prediction performance of RUL in noisy environment, making the prediction model adaptively set different thresholds for each sample according to its conditions and characteristics. Finally, the effectiveness of the proposed approach is verified by simulating turbofan engine and IEEE phm2010 data set, indicating that our proposed method has better performance than other approaches of literatures in prediction accuracy and time cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高天雨完成签到 ,获得积分10
2秒前
烟城完成签到,获得积分10
2秒前
鲤鱼问雁完成签到,获得积分10
3秒前
小饼干完成签到,获得积分10
3秒前
lby完成签到 ,获得积分10
3秒前
brd完成签到,获得积分10
5秒前
哈尼发布了新的文献求助10
5秒前
CYT完成签到,获得积分10
5秒前
crescendo完成签到,获得积分10
6秒前
wyn完成签到,获得积分10
6秒前
淡然冬灵应助王翎力采纳,获得50
6秒前
6秒前
俏皮的芝麻完成签到,获得积分10
7秒前
逗逗完成签到,获得积分10
7秒前
心灵美的南晴完成签到,获得积分10
7秒前
8秒前
hmx完成签到,获得积分10
8秒前
shuangma完成签到,获得积分10
9秒前
sunyz举报求助违规成功
9秒前
bc举报求助违规成功
9秒前
chen举报求助违规成功
9秒前
9秒前
有点鸭梨呀完成签到 ,获得积分10
9秒前
9秒前
科研废柴完成签到,获得积分10
10秒前
Ava应助RY采纳,获得10
10秒前
Hsu完成签到,获得积分10
10秒前
JJJJJJ完成签到,获得积分10
10秒前
tongke完成签到,获得积分10
10秒前
11秒前
矮小的万声完成签到,获得积分20
11秒前
楠D发布了新的文献求助10
11秒前
sevten完成签到,获得积分10
11秒前
柯科研完成签到,获得积分10
12秒前
甜崽完成签到,获得积分20
12秒前
12秒前
专一的猎豹完成签到,获得积分10
12秒前
bliyaa发布了新的文献求助10
13秒前
14秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369790
关于积分的说明 10457969
捐赠科研通 3089470
什么是DOI,文献DOI怎么找? 1699905
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263