Motor current signal analysis using hypergraph neural networks for fault diagnosis of electromechanical system

稳健性(进化) 超图 计算机科学 图形 数据挖掘 人工神经网络 断层(地质) 故障检测与隔离 模式识别(心理学) 人工智能 算法 理论计算机科学 数学 地质学 离散数学 地震学 执行机构 基因 化学 生物化学
作者
Kongliang Zhang,Hongkun Li,Shunxin Cao,Chen Yang,Fubiao Sun,Zibo Wang
出处
期刊:Measurement [Elsevier]
卷期号:201: 111697-111697 被引量:34
标识
DOI:10.1016/j.measurement.2022.111697
摘要

• The raw current signal is processed using time-shifting to avoid power-line interference. • The hypergraph structure applicable to current time-series data is established. • The complex interrelationship between nodes is represented by hyperedges. • Framework for current signal fault diagnosis of electromechanically coupled equipment is established. • Several different sets of rotating mechanical equipment experiments are designed to verify the superiority as well as the robustness of TS-HGNN in current signal fault diagnosis. Graph based networks are becoming an emerging trend in the field of fault diagnosis because of their powerful ability to mine the interrelationships between nodes. However, the existing graph-based networks are limited to mining the association relationship between adjacent nodes, which cannot reflect the strong association relationship between multiple nodes and thus affect the graph data quality. To solve these problems, a time-shifting based hypergraph neural network (TS-HGNN) is proposed for the accurate classification of fault types in electromechanical coupled systems. First, the time shifting method is applied to pre-process the original current signal to remove the power-line interference. Then, a hypergraph structure applicable to current signal is established to form complex interrelationships and a hyperedge convolution operation is designed to obtain the interrelationships of higher-order data for representation learning. Finally, several datasets are designed to verify the superiority and robustness of TS-HGNN in current signal fault classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LPJ完成签到,获得积分10
刚刚
1秒前
1秒前
galaxy发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
111发布了新的文献求助10
5秒前
Zzy22完成签到 ,获得积分10
6秒前
酷波er应助Blank采纳,获得10
6秒前
lu完成签到,获得积分10
6秒前
Plsf发布了新的文献求助10
7秒前
7秒前
嘿嘿应助常佳鑫采纳,获得10
9秒前
薄荷花完成签到,获得积分10
9秒前
现代访梦发布了新的文献求助10
9秒前
Wufangfang发布了新的文献求助10
9秒前
galaxy完成签到,获得积分20
10秒前
一早完成签到 ,获得积分10
10秒前
腿毛没啦发布了新的文献求助30
12秒前
balelalala发布了新的文献求助10
12秒前
13秒前
13秒前
yangyang发布了新的文献求助30
14秒前
15秒前
16秒前
123发布了新的文献求助10
17秒前
Owen应助称心的无心采纳,获得10
17秒前
18秒前
赘婿应助现代访梦采纳,获得10
18秒前
Blank发布了新的文献求助10
18秒前
balelalala完成签到,获得积分20
20秒前
熬夜波比应助木木采纳,获得10
21秒前
21秒前
充电宝应助ayintree采纳,获得10
22秒前
22秒前
FyD关闭了FyD文献求助
22秒前
微笑香薇发布了新的文献求助10
22秒前
dsdingding发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685773
求助须知:如何正确求助?哪些是违规求助? 5046098
关于积分的说明 15188499
捐赠科研通 4844920
什么是DOI,文献DOI怎么找? 2597694
邀请新用户注册赠送积分活动 1550121
关于科研通互助平台的介绍 1508488