自愈水凝胶
透明质酸
软骨发生
化学
间充质干细胞
软骨
京尼平
生物物理学
生物医学工程
细胞生物学
细胞
生物化学
壳聚糖
高分子化学
解剖
生物
医学
作者
Jirong Yang,Zizhao Tang,Yifan Liu,Zhaocong Luo,Yumei Xiao,Xingdong Zhang
标识
DOI:10.1016/j.ijbiomac.2021.05.188
摘要
Achieving chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) successfully is crucial for cartilage regeneration. To date, various hydrogels with different chemical microenvironment have been used to modulate chondrogenic differentiation of BMSCs, especially collagen and hyaluronic acid hydrogel. However, the chondro-inductive ability of collagen and hyaluronic acid hydrogel has not been evaluated yet and the different chemical and physical microenvironment of these two hydrogels increase the difficulty of comparison. In this study, three different hydrogels based on collagen and hyaluronic acid (self-assembled collagen hydrogel (Col), self-assembled collagen hydrogel cross-linked with genipin (Cgp), and methacrylated hyaluronic acid hydrogel (HA)) were prepared and their chondro-inductive ability on the encapsulated BMSCs was evaluated. Col and Cgp have the same chemical composition and similar microstructure, but are different from HA, while Cgp and HA hydrogels have the same mechanical strength. It was found that chemical and physical microenvironments of the hydrogels combined to influence cell condensation. Thanks to cell condensation was more likely to occur in collagen hydrogels in the early stage, the cartilage-induced ability was in the order of Col > Cgp > HA. However, the severe shrinkage of Col and Cgp resulted in no enough space for cell proliferation within hydrogels in the later stage. In contrast, relatively stable physical microenvironment of HA helped to maintain continuous production of cartilage-related matrix in the later stage. Overall, these results revealed that the chondro-inductive ability of collagen and hyaluronic acid hydrogel with different chemical and physical microenvironment cannot be evaluated by a particular time period. However, it provided important information for optimization and design of the future hydrogels towards successful repair of articular cartilage.
科研通智能强力驱动
Strongly Powered by AbleSci AI