已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Bone Metastasis Localisation in Nuclear Imaging data of Breast Cancer Patients

乳腺癌 转移 骨显像 骨转移 癌症 乳腺癌转移 医学 计算机科学 放射科 内科学
作者
Serafeim Moustakidis,Athanasios Siouras,Νικόλαος Παπανδριανός,Charis Ntakolia,Elpiniki I. Papageorgiou
标识
DOI:10.1109/iisa52424.2021.9555561
摘要

Bone scintigraphy is a popular method for the diagnosis of bone metastasis that typically occurs when cancer cells from the primary tumor relocate to the bone. In bone scintigraphy, the whole patient's body is scanned and the generated bone scan visualization provides a valuable source of information for the evaluation of various bone-related pathologies, including bone inflammation and fractures, nonmalignant bone lesions, bone infections, or even the spread of cancer to the bone. ?n particular, bone cancer is among the most frequently appeared diseases to patients suffering from metastatic cancer such as breast cancer patients. However, hot spots in bone scans indicating inflammations or cancer metastasis can be misleading. Accurate detection of pathological hot spots can be a very challenging procedure, with the experience of clinicians playing a critical role in the interpretation of the images. Artificial intelligence has emerged as a key enabler in the interpretation of medical imaging being able to model the aforementioned uncertainties and providing a reliable automated solution. So far, a number of convolutional neural networks (CNN)-based techniques have been proposed in the recent literature coping with the problem of bone metastasis classification. To the best of our knowledge, localization of pathological and degenerative hot spots in scintigraphy images is a scientific area that has not been explored. This paper contributes to the first ever deployment of advanced deep learning networks for bone metastasis localization in nuclear imaging data of breast cancer patients. The methodology relies on the latest advances of object detection via the use of two powerful and recent models (scaled YOLO v4 and Detectron2). The efficacy of the proposed methodology was demonstrated utilizing an extensive experimentation setup. The proposed methodology demonstrates unique potential in bone metastasis localization therefore facilitating the clinical interpretation of bone scintigraphy scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
4秒前
4秒前
frxin发布了新的文献求助30
5秒前
chen埃发布了新的文献求助10
7秒前
嘿嘿发布了新的文献求助10
7秒前
9秒前
will_fay发布了新的文献求助10
9秒前
messyJ发布了新的文献求助10
11秒前
yu完成签到 ,获得积分10
12秒前
爆炸boom完成签到 ,获得积分10
12秒前
14秒前
美满金鑫发布了新的文献求助10
15秒前
科研通AI5应助chen埃采纳,获得10
17秒前
小小小发布了新的文献求助10
18秒前
桐桐应助饱满芷卉采纳,获得10
18秒前
19秒前
沉静台灯发布了新的文献求助10
23秒前
所所应助美满金鑫采纳,获得10
24秒前
奇奇怪怪发布了新的文献求助50
24秒前
26秒前
啤酒白菜完成签到,获得积分10
28秒前
星辰大海应助安和桥采纳,获得10
28秒前
28秒前
30秒前
31秒前
林林林发布了新的文献求助10
32秒前
LongH2完成签到,获得积分10
32秒前
Rui发布了新的文献求助10
33秒前
lazy_t发布了新的文献求助10
33秒前
35秒前
35秒前
36秒前
李静关注了科研通微信公众号
37秒前
英姑应助T_MC郭采纳,获得10
38秒前
39秒前
39秒前
甜甜怡发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4340754
求助须知:如何正确求助?哪些是违规求助? 3849125
关于积分的说明 12019532
捐赠科研通 3490358
什么是DOI,文献DOI怎么找? 1915530
邀请新用户注册赠送积分活动 958586
科研通“疑难数据库(出版商)”最低求助积分说明 858655