PAGE-Net: Interpretable and Integrative Deep Learning for Survival Analysis Using Histopathological Images and Genomic Data

人工智能 计算机科学 网(多面体) 深度学习 模式识别(心理学) 计算生物学 生物 数学 几何学
作者
Jie Hao,Sai Kosaraju,Nelson Zange Tsaku,Dae Hyun Song,Mingon Kang
出处
期刊:Biocomputing 卷期号:: 355-366 被引量:58
标识
DOI:10.1142/9789811215636_0032
摘要

The integration of multi-modal data, such as histopathological images and genomic data, is essential for understanding cancer heterogeneity and complexity for personalized treatments, as well as for enhancing survival predictions in cancer study. Histopathology, as a clinical gold-standard tool for diagnosis and prognosis in cancers, allows clinicians to make precise decisions on therapies, whereas high-throughput genomic data have been investigated to dissect the genetic mechanisms of cancers. We propose a biologically interpretable deep learning model (PAGE-Net) that integrates histopathological images and genomic data, not only to improve survival prediction, but also to identify genetic and histopathological patterns that cause different survival rates in patients. PAGE-Net consists of pathology/genome/demography-specific layers, each of which provides comprehensive biological interpretation. In particular, we propose a novel patch-wise texture-based convolutional neural network, with a patch aggregation strategy, to extract global survival-discriminative features, without manual annotation for the pathology-specific layers. We adapted the pathway-based sparse deep neural network, named Cox-PASNet, for the genome-specific layers. The proposed deep learning model was assessed with the histopathological images and the gene expression data of Glioblastoma Multiforme (GBM) at The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA). PAGE-Net achieved a C-index of 0.702, which is higher than the results achieved with only histopathological images (0.509) and Cox-PASNet (0.640). More importantly, PAGE-Net can simultaneously identify histopathological and genomic prognostic factors associated with patients survivals. The source code of PAGE-Net is publicly available at https://github.com/DataX-JieHao/PAGE-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助yi采纳,获得10
刚刚
毛耳朵完成签到,获得积分10
1秒前
Akim应助舟车靡从采纳,获得10
1秒前
2秒前
qql完成签到,获得积分10
2秒前
年轻枕头完成签到,获得积分10
2秒前
CodeCraft应助碳烤小肥肠采纳,获得10
3秒前
潘潘发布了新的文献求助10
3秒前
爱你沛沛完成签到 ,获得积分10
4秒前
4秒前
5秒前
dingdong258完成签到,获得积分10
5秒前
Knight-1124完成签到,获得积分10
7秒前
8秒前
xiao完成签到 ,获得积分10
8秒前
郭丹丹发布了新的文献求助10
8秒前
30完成签到 ,获得积分10
8秒前
8秒前
开心凝海发布了新的文献求助10
9秒前
Knight-1124发布了新的文献求助10
10秒前
Yasing发布了新的文献求助10
10秒前
10秒前
jkair完成签到,获得积分10
11秒前
FashionBoy应助欢喜念双采纳,获得10
11秒前
11秒前
12秒前
俏皮代丝发布了新的文献求助10
13秒前
舟车靡从发布了新的文献求助10
14秒前
Yang完成签到,获得积分10
15秒前
15秒前
寡核苷酸小白完成签到 ,获得积分10
15秒前
潘潘发布了新的文献求助10
17秒前
闪闪谷槐完成签到,获得积分10
17秒前
赘婿应助拼搏山槐采纳,获得10
18秒前
zhukun完成签到,获得积分10
18秒前
科研通AI5应助林允夏子采纳,获得10
19秒前
Akim应助猪猪hero采纳,获得10
19秒前
20秒前
21秒前
俏皮代丝完成签到,获得积分10
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231837
求助须知:如何正确求助?哪些是违规求助? 3765105
关于积分的说明 11830613
捐赠科研通 3424081
什么是DOI,文献DOI怎么找? 1879039
邀请新用户注册赠送积分活动 931933
科研通“疑难数据库(出版商)”最低求助积分说明 839431