Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks

人工神经网络 计算机科学 脉动流 校准 人工智能 机器学习 管道(软件) 流量(数学) 物理 机械 量子力学 医学 心脏病学 程序设计语言
作者
Georgios Kissas,Yibo Yang,Eileen Hwuang,Walter R. Witschey,John A. Detre,Paris Perdikaris
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:358: 112623-112623 被引量:440
标识
DOI:10.1016/j.cma.2019.112623
摘要

Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a relatively cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助欣喜的未来采纳,获得10
1秒前
adfadf完成签到,获得积分20
3秒前
小羊咩咩完成签到,获得积分10
3秒前
CADD_Kelvin完成签到,获得积分10
3秒前
3秒前
4秒前
baobao完成签到,获得积分20
6秒前
Chief完成签到,获得积分0
6秒前
安静复天发布了新的文献求助10
8秒前
斯文败类应助又欠采纳,获得10
9秒前
11秒前
11秒前
快乐的千亦完成签到 ,获得积分10
13秒前
13秒前
李健的粉丝团团长应助HiQ采纳,获得10
14秒前
科研通AI5应助HiQ采纳,获得10
14秒前
陈cc发布了新的文献求助20
17秒前
17秒前
顾矜应助YHDing采纳,获得10
20秒前
20秒前
21秒前
哈哈哈完成签到,获得积分20
23秒前
莓烦恼完成签到,获得积分10
23秒前
害羞的飞槐完成签到,获得积分20
24秒前
乌鸦完成签到,获得积分10
24秒前
yu完成签到,获得积分10
25秒前
26秒前
英姑应助iu采纳,获得10
26秒前
26秒前
26秒前
27秒前
苏qj关注了科研通微信公众号
27秒前
he大海贼完成签到 ,获得积分10
27秒前
scc发布了新的文献求助30
28秒前
胖飞飞完成签到,获得积分10
28秒前
32秒前
kingwill举报合适冰棍求助涉嫌违规
32秒前
英姑应助大意的雨双采纳,获得10
32秒前
又欠发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787371
求助须知:如何正确求助?哪些是违规求助? 3332962
关于积分的说明 10258543
捐赠科研通 3048417
什么是DOI,文献DOI怎么找? 1673109
邀请新用户注册赠送积分活动 801623
科研通“疑难数据库(出版商)”最低求助积分说明 760308