Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks

人工神经网络 计算机科学 脉动流 校准 人工智能 机器学习 管道(软件) 流量(数学) 物理 机械 量子力学 医学 心脏病学 程序设计语言
作者
Georgios Kissas,Yibo Yang,Eileen Hwuang,Walter R. Witschey,John A. Detre,Paris Perdikaris
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:358: 112623-112623 被引量:475
标识
DOI:10.1016/j.cma.2019.112623
摘要

Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a relatively cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
637发布了新的文献求助10
2秒前
2秒前
2秒前
qy发布了新的文献求助10
3秒前
twinkle发布了新的文献求助10
4秒前
5秒前
大白发布了新的文献求助10
5秒前
zhfliang完成签到,获得积分10
5秒前
勤劳的小吴完成签到,获得积分10
5秒前
小豆豆发布了新的文献求助10
6秒前
云端步伐完成签到,获得积分20
6秒前
东方楚才发布了新的文献求助10
7秒前
文文应助hyw采纳,获得10
7秒前
Ting发布了新的文献求助10
8秒前
坚定的骁完成签到,获得积分10
9秒前
10秒前
10秒前
羽毛发布了新的文献求助30
14秒前
14秒前
orixero应助神揽星辰入梦采纳,获得10
15秒前
百里健柏完成签到,获得积分10
16秒前
Zhangqg发布了新的文献求助10
16秒前
风是淡淡的云完成签到 ,获得积分10
16秒前
treetree的应助我爱亲柠檬采纳,获得40
17秒前
18秒前
18秒前
林啸峰完成签到,获得积分10
19秒前
Meyako举报量子星尘求助涉嫌违规
19秒前
科研通AI5应助阳光的萤采纳,获得10
19秒前
贾晓丽发布了新的文献求助10
21秒前
科研通AI2S应助yuyuyuan采纳,获得10
21秒前
科研通AI6应助嘻嘻采纳,获得10
23秒前
23秒前
23秒前
23秒前
千空应助墨墨采纳,获得10
24秒前
637完成签到,获得积分10
25秒前
科研通AI5应助insomnia采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4372397
求助须知:如何正确求助?哪些是违规求助? 3869656
关于积分的说明 12063025
捐赠科研通 3512383
什么是DOI,文献DOI怎么找? 1927394
邀请新用户注册赠送积分活动 969408
科研通“疑难数据库(出版商)”最低求助积分说明 868265