A Deep Learning Approach to Predict Abdominal Aortic Aneurysm Expansion Using Longitudinal Data

腹主动脉瘤 人工智能 深度学习 计算机科学 深信不疑网络 概率逻辑 动脉瘤 机器学习 生物信息学 分割 模式识别(心理学) 放射科 医学 生物化学 基因 化学
作者
Zhenxiang Jiang,Nguyễn Văn Huân,Jongeun Choi,Whal Lee,Seungik Baek
出处
期刊:Frontiers in Physics [Frontiers Media]
卷期号:7 被引量:38
标识
DOI:10.3389/fphy.2019.00235
摘要

An abdominal aortic aneurysm (AAA) is a gradual enlargement of the aorta that can cause a life-threatening event when a rupture occurs. Aneurysmal geometry has been proved to be a critical factor in determining when to surgically treat AAAs, but, it is challenging to predict the patient-specific evolution of an AAA with biomechanical or statistical models. The recent success of deep learning in biomedical engineering shows promise for predictive medicine. However, a deep learning model requires a large dataset, which limits its application to the prediction of the patient-specific AAA expansion. In order to cope with the limited medical follow-up dataset of AAAs, a novel technique combining a physical computational model with a deep learning model is introduced to predict the evolution of AAAs. First, a vascular Growth and Remodeling (G&R) computational model, which is able to capture the variations of actual patient AAA geometries, is employed to generate a limited in silico dataset. Second, the Probabilistic Collocation Method (PCM) is employed to reproduce a large in silico dataset by approximating the G&R simulation outputs. A Deep Belief Network (DBN) is then trained to provide fast predictions of patient-specific AAA expansion, using both in silico data and patients' follow-up data. Follow-up Computer Tomography (CT) scan images from 20 patients are employed to demonstrate the effectiveness and the feasibility of the proposed model. The test results show that the DBN is able to predict the enlargements of AAAs with an average relative error of 3.1%, which outperforms the classical mixed-effect model by 65%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚定珍发布了新的文献求助30
1秒前
安静发布了新的文献求助10
1秒前
cv发布了新的文献求助10
1秒前
monere发布了新的文献求助10
5秒前
6秒前
老迟到的芹菜完成签到,获得积分10
6秒前
7秒前
He完成签到,获得积分20
8秒前
Ys驳回了乐乐应助
11秒前
啊咧咧完成签到 ,获得积分10
11秒前
852应助木目耶耶耶采纳,获得10
13秒前
JamesPei应助小黑采纳,获得10
13秒前
福明明发布了新的文献求助10
13秒前
siyuan完成签到,获得积分10
13秒前
胡萝卜发布了新的文献求助10
14秒前
蝈蝈蝈完成签到 ,获得积分10
14秒前
豆浆油条完成签到 ,获得积分10
14秒前
14秒前
16秒前
汉堡包应助monere采纳,获得10
16秒前
酷波er应助材化小将军采纳,获得10
17秒前
18秒前
mhc完成签到,获得积分20
19秒前
panpan完成签到,获得积分10
20秒前
tthxq发布了新的文献求助10
23秒前
23秒前
25秒前
香蕉觅云应助LisaZhuo采纳,获得10
25秒前
科研通AI5应助李海洋采纳,获得10
27秒前
28秒前
所所应助知性的真采纳,获得10
30秒前
吴未完成签到,获得积分10
31秒前
小黑发布了新的文献求助10
31秒前
33秒前
Lee完成签到,获得积分10
35秒前
35秒前
财来完成签到 ,获得积分10
36秒前
36秒前
赘婿应助科研通管家采纳,获得10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056