EEG-based emotion recognition using simple recurrent units network and ensemble learning

计算机科学 人工智能 模式识别(心理学) 集成学习 循环神经网络 脑电图 人工神经网络 依赖关系(UML) 深度学习 抓住 情绪分类 机器学习 语音识别 心理学 精神科 程序设计语言
作者
Wei Chen,Lanlan Chen,Zhenzhen Song,Lou Xiao-guang,Dongdong Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:58: 101756-101756 被引量:160
标识
DOI:10.1016/j.bspc.2019.101756
摘要

The purpose of this research is to develop an EEG-based emotion recognition system for identification of three emotions: positive, neutral and negative. Up to now, various modeling approaches for automatic emotion recognition have been reported. However, the time dependency property during emotion process has not been fully considered. In order to grasp the temporal information of EEG, we adopt deep Simple Recurrent Units (SRU) network which is not only capable of processing sequence data but also has the ability to solve the problem of long-term dependencies occurrence in normal Recurrent Neural Network (RNN). Before training the emotion models, Dual-tree Complex Wavelet Transform (DT-CWT) was applied to decompose the original EEG into five constituent sub-bands, from which features were then extracted using time, frequency and nonlinear analysis. Next, deep SRU models were established using four different features over five frequency bands and favorable results were found to be related to higher frequency bands. Finally, three ensemble strategies were employed to integrate base SRU models to get more desirable classification performance. We evaluate and compare the performance of shallow models, deep models and ensemble models. Our experimental results demonstrated that the proposed emotion recognition system based on SRU network and ensemble learning could achieve satisfactory identification performance with relatively economic computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伪善者发布了新的文献求助10
刚刚
刚刚
FashionBoy应助Roinne采纳,获得10
刚刚
刚刚
yuyu发布了新的文献求助10
刚刚
刚刚
WILD完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
好的老师完成签到,获得积分10
1秒前
叨叨小夫夫完成签到,获得积分10
1秒前
1秒前
充电宝应助君安采纳,获得10
2秒前
3秒前
科研通AI5应助大熊采纳,获得10
4秒前
4秒前
4秒前
14完成签到,获得积分10
4秒前
5秒前
大力沛萍完成签到,获得积分10
5秒前
5秒前
William发布了新的文献求助10
5秒前
Skuld发布了新的文献求助10
5秒前
脆脆鲨发布了新的文献求助10
7秒前
7秒前
7秒前
木子发布了新的文献求助10
8秒前
所所应助守诺采纳,获得10
8秒前
深情安青应助伪善者采纳,获得10
8秒前
8秒前
默默曼冬完成签到,获得积分10
9秒前
正直电脑完成签到,获得积分20
11秒前
小肥羊发布了新的文献求助10
11秒前
zhang完成签到 ,获得积分10
11秒前
12秒前
如常发布了新的文献求助10
12秒前
tomato发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087747
求助须知:如何正确求助?哪些是违规求助? 4302968
关于积分的说明 13409636
捐赠科研通 4128431
什么是DOI,文献DOI怎么找? 2260914
邀请新用户注册赠送积分活动 1265026
关于科研通互助平台的介绍 1199399