Decentralized Multi-agent information-theoretic control for target estimation and localization: finding gas leaks

计算机科学 聚类分析 机器人 估计员 运动规划 弹道 数学优化 移动机器人 算法 数据挖掘 人工智能 数学 天文 统计 物理
作者
Joseph R. Bourne,Matthew N. Goodell,Xiang He,Jake A. Steiner,Kam K. Leang
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:39 (13): 1525-1548 被引量:25
标识
DOI:10.1177/0278364920957090
摘要

This article presents a new decentralized multi-agent information-theoretic (DeMAIT) control algorithm for mobile sensors (agents). The algorithm leverages Bayesian estimation and information-theoretic motion planning for efficient and effective estimation and localization of a target, such as a chemical gas leak. The algorithm consists of: (1) a non-parametric Bayesian estimator, (2) an information-theoretic trajectory planner that generates “informative trajectories” for agents to follow, and (3) a controller and collision avoidance algorithm to ensure that each agent follows its trajectory as closely as possible in a safe manner. Advances include the use of a new information-gain metric and its analytical gradient, which do not depend on an infinite series like prior information metrics. Dynamic programming and multi-threading techniques are applied to efficiently compute the mutual information to minimize measurement uncertainty. The estimation and motion planning processes also take into account the dynamics of the sensors and agents. Extensive simulations are conducted to compare the performance between the DeMAIT algorithm to a traditional raster-scanning method and a clustering method with coordination. The main hypothesis that the DeMAIT algorithm outperforms the other two methods is validated, specifically where the average localization success rate for the DeMAIT algorithm is (a) higher and (b) more robust to changes in the source location, robot team size, and search area size than the raster-scanning and clustering methods. Finally, outdoor field experiments are conducted using a team of custom-built aerial robots equipped with gas concentration sensors to demonstrate efficacy of the DeMAIT algorithm to estimate and find the source of a propane gas leak.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助NingSun采纳,获得20
2秒前
汉堡包应助ransheng采纳,获得10
5秒前
5秒前
6秒前
xiejinhui完成签到,获得积分20
6秒前
scm应助elivsZhou采纳,获得30
7秒前
9秒前
gggggg完成签到 ,获得积分10
10秒前
神内打工人完成签到 ,获得积分10
14秒前
李振博发布了新的文献求助10
14秒前
活泼不可发布了新的文献求助10
14秒前
蓝色的纪念完成签到,获得积分10
14秒前
15秒前
丘比特应助余凉采纳,获得30
15秒前
16秒前
共享精神应助ZYCong采纳,获得10
17秒前
18秒前
梨花雨凉完成签到 ,获得积分10
19秒前
内向白开水给内向白开水的求助进行了留言
20秒前
NingSun发布了新的文献求助20
20秒前
20秒前
zhang568完成签到,获得积分10
21秒前
所所应助深情冷雪采纳,获得10
21秒前
yuc完成签到,获得积分10
21秒前
汉堡包应助猪猪hero采纳,获得10
24秒前
25秒前
烟花应助wch采纳,获得10
25秒前
kk完成签到,获得积分10
26秒前
27秒前
28秒前
执着月饼完成签到,获得积分10
29秒前
29秒前
kk发布了新的文献求助100
29秒前
STZHEN完成签到,获得积分10
29秒前
明天见完成签到,获得积分10
30秒前
久伴终难入她心完成签到,获得积分10
31秒前
依瑶发布了新的文献求助10
31秒前
lyuzq完成签到,获得积分20
31秒前
大卫戴发布了新的文献求助10
32秒前
yulong完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3948952
求助须知:如何正确求助?哪些是违规求助? 3494366
关于积分的说明 11072075
捐赠科研通 3225006
什么是DOI,文献DOI怎么找? 1782725
邀请新用户注册赠送积分活动 867178
科研通“疑难数据库(出版商)”最低求助积分说明 800652