Decentralized Multi-agent information-theoretic control for target estimation and localization: finding gas leaks

计算机科学 聚类分析 机器人 估计员 运动规划 弹道 数学优化 移动机器人 算法 数据挖掘 人工智能 数学 统计 物理 天文
作者
Joseph R. Bourne,Matthew N. Goodell,Xiang He,Jake A. Steiner,Kam K. Leang
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:39 (13): 1525-1548 被引量:25
标识
DOI:10.1177/0278364920957090
摘要

This article presents a new decentralized multi-agent information-theoretic (DeMAIT) control algorithm for mobile sensors (agents). The algorithm leverages Bayesian estimation and information-theoretic motion planning for efficient and effective estimation and localization of a target, such as a chemical gas leak. The algorithm consists of: (1) a non-parametric Bayesian estimator, (2) an information-theoretic trajectory planner that generates “informative trajectories” for agents to follow, and (3) a controller and collision avoidance algorithm to ensure that each agent follows its trajectory as closely as possible in a safe manner. Advances include the use of a new information-gain metric and its analytical gradient, which do not depend on an infinite series like prior information metrics. Dynamic programming and multi-threading techniques are applied to efficiently compute the mutual information to minimize measurement uncertainty. The estimation and motion planning processes also take into account the dynamics of the sensors and agents. Extensive simulations are conducted to compare the performance between the DeMAIT algorithm to a traditional raster-scanning method and a clustering method with coordination. The main hypothesis that the DeMAIT algorithm outperforms the other two methods is validated, specifically where the average localization success rate for the DeMAIT algorithm is (a) higher and (b) more robust to changes in the source location, robot team size, and search area size than the raster-scanning and clustering methods. Finally, outdoor field experiments are conducted using a team of custom-built aerial robots equipped with gas concentration sensors to demonstrate efficacy of the DeMAIT algorithm to estimate and find the source of a propane gas leak.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WONDER关注了科研通微信公众号
刚刚
大个应助肆陆采纳,获得10
1秒前
情怀应助wyc采纳,获得10
2秒前
背后梦安发布了新的文献求助10
2秒前
drfwjuikesv发布了新的文献求助10
3秒前
3秒前
天天快乐应助杨憨憨采纳,获得10
3秒前
新垣结衣完成签到,获得积分10
3秒前
4秒前
LLLLL发布了新的文献求助10
4秒前
Hello应助洸彦采纳,获得10
4秒前
彭于晏应助呆萌从蓉采纳,获得10
5秒前
波波发布了新的文献求助20
6秒前
6秒前
6秒前
欣喜书蕾完成签到,获得积分10
8秒前
现代雁桃发布了新的文献求助10
9秒前
9秒前
xiaobai发布了新的文献求助10
9秒前
123456发布了新的文献求助10
10秒前
10秒前
10秒前
jfy发布了新的文献求助10
11秒前
无花果应助gfbh采纳,获得10
11秒前
11秒前
完美世界应助东方青苍采纳,获得10
11秒前
星辰大海应助tao采纳,获得10
11秒前
12秒前
qwp发布了新的文献求助10
12秒前
12秒前
SciGPT应助如意的碧蓉采纳,获得10
14秒前
drfwjuikesv完成签到,获得积分10
14秒前
maolao发布了新的文献求助10
14秒前
wyc发布了新的文献求助10
15秒前
15秒前
orange完成签到,获得积分10
16秒前
紫川应助愤怒的千凝采纳,获得10
16秒前
承诺信守完成签到,获得积分10
17秒前
17秒前
田様应助北极光采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791756
求助须知:如何正确求助?哪些是违规求助? 3336090
关于积分的说明 10278727
捐赠科研通 3052729
什么是DOI,文献DOI怎么找? 1675280
邀请新用户注册赠送积分活动 803318
科研通“疑难数据库(出版商)”最低求助积分说明 761165