A deep learning approach to generate contrast-enhanced computerised tomography angiograms without the use of intravenous contrast agents

医学 霍恩斯菲尔德秤 对比度(视觉) 血栓 放射科 碘造影剂 核医学 人工智能 计算机断层摄影术 外科 计算机科学
作者
Anirudh Chandrashekar,Natesh Shivakumar,Pierfrancesco Lapolla,Ashok Handa,Vicente Grau,Regent Lee
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:41 (Supplement_2) 被引量:25
标识
DOI:10.1093/ehjci/ehaa946.0156
摘要

Abstract Introduction Contrast-enhanced computerised tomographic (CT) angiograms are widely used in cardiovascular imaging to obtain a non-invasive view of arterial structures. In aortic aneurysmal disease (AAA), CT angiograms are required prior to surgical intervention to differentiate between blood and the intra-luminal thrombus, which is present in 95% of cases. However, contrast agents are associated with complications at the injection site as well as renal toxicity leading to contrast-induced nephropathy (CIN) and renal failure. Purpose We hypothesised that the raw data acquired from a non-contrast CT contains sufficient information to differentiate blood and other soft tissue components. Therefore, we utilised deep learning methods to define the subtleties between the various components of soft tissue in order to simulate contrast enhanced CT images without the need of contrast agents. Methods Twenty-six AAA patients with paired non-contrast and contrast-enhanced CT images were randomly selected from an ethically approved ongoing study (Ethics Ref 13/SC/0250) and used for model training and evaluation (13/13). Non-contrast axial slices within the aneurysmal region from 10 patients (n=100) were sampled for the underlying Hounsfield unit (HU) distribution at the lumen, intra-luminal thrombus and interface locations, identified from their paired contrast axial slices. Subsequently, paired axial slices within the training cohort were augmented in a ratio of 10:1 to produce a total of 23,551 2-D images. We trained a 2-D Cycle Generative Adversarial Network (cycleGAN) for this non-contrast to contrast transformation task. Model output was assessed by comparison to the contrast image, which serves as a gold standard, using image similarity metrics (ex. SSIM Index). Results Sampling HUs within the non-contrast CT scan across multiple axial slices (Figure 1A) revealed significant differences between the blood flow lumen (yellow), blood/thrombus interface (red), and thrombus (blue) regions (p<0.001 for all comparisons). This highlighted the intrinsic differences between the regions and established the foundation for subsequent deep learning methods. The Non-Contrast-to-Contrast (NC2C)-cycleGAN was trained with a learning rate of 0.0002 for 200 epochs on 256 x 256 images centred around the aorta. Figure 1B depicts “contrast-enhanced” images generated from non-contrast CT images across the aortic length from the testing cohort. This preliminary model is able to differentiate between the lumen and intra-luminal thrombus of aneurysmal sections with reasonable resemblance to the ground truth. Conclusion This study describes, for the first time, the ability to differentiate between visually incoherent soft tissue regions in non-contrast CT images using deep learning methods. Ultimately, refinement of this methodology may negate the use of intravenous contrast and prevent related complications. CTA Generation from Non-Contrast CTs Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): Clarendon

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
迅猛2002发布了新的文献求助10
4秒前
7秒前
耍酷寒烟完成签到,获得积分20
7秒前
yuzhou发布了新的文献求助10
8秒前
向浩发布了新的文献求助10
8秒前
8秒前
8秒前
10秒前
10秒前
在水一方应助优娜采纳,获得10
10秒前
Jiojio完成签到,获得积分10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
李嘿嘿发布了新的文献求助10
12秒前
共享精神应助明亮冷珍采纳,获得10
12秒前
13秒前
samara完成签到,获得积分20
13秒前
活力小笼包完成签到,获得积分10
15秒前
cc完成签到 ,获得积分10
15秒前
15秒前
文静的飞飞完成签到 ,获得积分10
16秒前
wuhaoqingnian发布了新的文献求助10
16秒前
Dr_Prince完成签到,获得积分10
16秒前
善学以致用应助陌人归采纳,获得20
16秒前
cenghao发布了新的文献求助10
17秒前
程文轩发布了新的文献求助10
18秒前
handsome发布了新的文献求助10
19秒前
情怀应助cc采纳,获得10
19秒前
19秒前
Orange应助迅猛2002采纳,获得10
20秒前
超帅的南珍完成签到,获得积分10
20秒前
20秒前
天真少年发布了新的文献求助10
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071