量子机器学习
计算机科学
量子计算机
量子
量子位元
量子信息
量子网络
油藏计算
实现
量子动力学
量子技术
人工智能
人工神经网络
理论计算机科学
开放量子系统
物理
循环神经网络
量子力学
作者
Keisuke Fujii,Kohei Nakajima
标识
DOI:10.1103/physrevapplied.8.024030
摘要
The authors describe an alternative to digital quantum computation that uses natural quantum dynamics for information processing. $Q\phantom{\rule{0}{0ex}}u\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}u\phantom{\rule{0}{0ex}}m$ $r\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}s\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}v\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}r$ $c\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}m\phantom{\rule{0}{0ex}}p\phantom{\rule{0}{0ex}}u\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}g$ does not require fine tuning of parameters, is robust against noise, and is based on existing devices. Simulations suggest that with this approach, a system of just 5 to 7 qubits is as powerful as a recurrent neural network with hundreds of nodes. This framework for artificial intelligence powered by quantum physics enables $t\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}m\phantom{\rule{0}{0ex}}p\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}l$ machine-learning tasks, such as natural language processing and predicting the stock market.
科研通智能强力驱动
Strongly Powered by AbleSci AI