Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency

化学 钝化 钙钛矿(结构) 能量转换效率 双功能 光伏系统 光电子学 化学物理 光化学 化学工程 结晶学 材料科学 图层(电子) 有机化学 催化作用 生物 工程类 生态学
作者
Fengzhu Li,Xiang Deng,Qi Feng,Zhen Li,Danjun Liu,Dong Shen,Minchao Qin,Shengfan Wu,Francis Lin,Sei‐Hum Jang,Jie Zhang,Xinhui Lu,Dangyuan Lei,Chun‐Sing Lee,Zonglong Zhu,Alex K.‐Y. Jen
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:142 (47): 20134-20142 被引量:606
标识
DOI:10.1021/jacs.0c09845
摘要

Passivating surface and bulk defects of perovskite films has been proven to be an effective way to minimize nonradiative recombination losses in perovskite solar cells (PVSCs). The lattice interference and perturbation of atomic periodicity at the perovskite surfaces often significantly affect the material properties and device efficiencies. By tailoring the terminal groups on the perovskite surface and modifying the surface chemical environment, the defects can be reduced to enhance the photovoltaic performance and stability of derived PVSCs. Here, we report a rationally designed bifunctional molecule, piperazinium iodide (PI), containing both R2NH and R2NH2+ groups on the same six-membered ring, behaving both as an electron donor and an electron acceptor to react with different surface-terminating ends on perovskite films. The resulting perovskite films after defect passivation show released surface residual stress, suppressed nonradiative recombination loss, and more n-type characteristics for sufficient energy transfer. Consequently, charge recombination is significantly suppressed to result in a high open-circuit voltage (VOC) of 1.17 V and a reduced VOC loss of 0.33 V. A very high power conversion efficiency (PCE) of 23.37% (with 22.75% certified) could be achieved, which is the highest value reported for inverted PVSCs. Our work reveals a very effective way of using rationally designed bifunctional molecules to simultaneously enhance the device performance and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助stay采纳,获得10
刚刚
加勒比海带完成签到,获得积分10
1秒前
一一发布了新的文献求助30
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
3秒前
asdfzxcv应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
情怀应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得20
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
老福贵儿应助科研通管家采纳,获得10
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
阿杜发布了新的文献求助10
5秒前
欣欣发布了新的文献求助10
6秒前
6秒前
小晓发布了新的文献求助10
6秒前
baekyu发布了新的文献求助10
8秒前
8秒前
8秒前
科研帽发布了新的文献求助10
8秒前
可耐的海豚完成签到 ,获得积分10
8秒前
wei完成签到 ,获得积分10
8秒前
科研通AI6应助好哥哥采纳,获得10
9秒前
www完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646711
求助须知:如何正确求助?哪些是违规求助? 4772234
关于积分的说明 15036353
捐赠科研通 4805530
什么是DOI,文献DOI怎么找? 2569751
邀请新用户注册赠送积分活动 1526689
关于科研通互助平台的介绍 1485889