Region Attention Networks for Pose and Occlusion Robust Facial Expression Recognition

闭塞 人工智能 卷积神经网络 计算机科学 面部表情 面部表情识别 模式识别(心理学) 稳健性(进化) 计算机视觉 面部识别系统 生物化学 医学 化学 心脏病学 基因
作者
Kai Wang,Xiaojiang Peng,Jianfei Yang,Debin Meng,Yu Qiao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 4057-4069 被引量:828
标识
DOI:10.1109/tip.2019.2956143
摘要

Occlusion and pose variations, which can change facial appearance significantly, are two major obstacles for automatic Facial Expression Recognition (FER). Though automatic FER has made substantial progresses in the past few decades, occlusion-robust and pose-invariant issues of FER have received relatively less attention, especially in real-world scenarios. This paper addresses the real-world pose and occlusion robust FER problem in the following aspects. First, to stimulate the research of FER under real-world occlusions and variant poses, we annotate several in-the-wild FER datasets with pose and occlusion attributes for the community. Second, we propose a novel Region Attention Network (RAN), to adaptively capture the importance of facial regions for occlusion and pose variant FER. The RAN aggregates and embeds varied number of region features produced by a backbone convolutional neural network into a compact fixed-length representation. Last, inspired by the fact that facial expressions are mainly defined by facial action units, we propose a region biased loss to encourage high attention weights for the most important regions. We validate our RAN and region biased loss on both our built test datasets and four popular datasets: FERPlus, AffectNet, RAF-DB, and SFEW. Extensive experiments show that our RAN and region biased loss largely improve the performance of FER with occlusion and variant pose. Our method also achieves state-of-the-art results on FERPlus, AffectNet, RAF-DB, and SFEW. Code and the collected test data will be publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mojito发布了新的文献求助10
刚刚
林中鹿完成签到,获得积分10
刚刚
刚刚
z!完成签到 ,获得积分10
刚刚
田三毛发布了新的文献求助20
1秒前
2秒前
Yvonne完成签到,获得积分10
2秒前
适可而止完成签到,获得积分10
2秒前
3秒前
雪饼完成签到,获得积分10
3秒前
3秒前
悲凉的孤菱完成签到,获得积分10
4秒前
琉璃完成签到,获得积分10
4秒前
Posit发布了新的文献求助10
4秒前
5秒前
5秒前
艾妮吗完成签到,获得积分10
5秒前
打打应助ven采纳,获得10
6秒前
Meyako应助杨振宇采纳,获得10
6秒前
6秒前
蓝幻雷发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
彭于晏应助若晨采纳,获得10
8秒前
8秒前
充电宝应助水电费采纳,获得10
9秒前
wh222222发布了新的文献求助10
9秒前
9秒前
9秒前
姜戈发布了新的文献求助10
10秒前
无极微光应助Zz采纳,获得20
11秒前
南方周末发布了新的文献求助30
11秒前
11秒前
Orange应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得30
13秒前
科目三应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
蓝幻雷完成签到,获得积分10
13秒前
Rye227应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445925
求助须知:如何正确求助?哪些是违规求助? 4555131
关于积分的说明 14249821
捐赠科研通 4477403
什么是DOI,文献DOI怎么找? 2453266
邀请新用户注册赠送积分活动 1444039
关于科研通互助平台的介绍 1420008