Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking

声纳 计算机科学 卷积神经网络 人工智能 计算机视觉 水下 图像处理 光学(聚焦) 遥控水下航行器 图像(数学) 移动机器人 机器人 海洋学 物理 光学 地质学
作者
Igor Kvasić,Nikola Mišković,Zoran Vukić
出处
期刊:OCEANS 2019 - Marseille 卷期号:: 1-6 被引量:41
标识
DOI:10.1109/oceanse.2019.8867461
摘要

Autonomous underwater navigation presents a whole set of challenges to be resolved in order to become adequately accurate and reliable. That is particularly critical when human divers work in close collaboration with autonomous underwater vehicles (AUVs). In absence of global positioning signals underwater, acoustic based sensors such as LBL (long-baseline), SBL (short-baseline) and USBL (ultrashort-baseline) are commonly used for navigation and localization. In addition to these low-bandwidth and high latency technologies, cameras and sonars can provide position measurements relative to the vehicle which can be used as an aid for navigation as well as for keeping a safe working distance between the diver and the AUV. While optical cameras are highly affected by water turbidity and lighting conditions, sonar images often become hard to interpret using conventional image processing methods due to image granulation and high noise levels. This paper focuses on finding a robust and reliable sonar image processing method for detection and tracking of human divers using convolutional neural networks. Machine learning algorithms are making a huge impact in computer vision applications but are not always considered when it comes to sonar image processing. After presenting commonly used image processing techniques the paper will focus on giving an overview of state-of-the-art machine learning algorithms and explore their performance in custom sonar image dataset processing. Finally, the performance of these algorithms will be compared on a set of sonar recordings to determine their reliability and applicability in a real-time operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hym发布了新的文献求助10
刚刚
独特易形发布了新的文献求助10
刚刚
nya完成签到,获得积分10
刚刚
1秒前
2秒前
鸭梨完成签到,获得积分10
2秒前
hhk完成签到,获得积分10
2秒前
行人完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
dew完成签到,获得积分0
4秒前
李健应助研究生采纳,获得10
4秒前
文艺砖家完成签到,获得积分10
4秒前
程ch发布了新的文献求助10
5秒前
hjhhjh发布了新的文献求助10
5秒前
5秒前
资雁山应助外向的聪健采纳,获得10
5秒前
Selenaxue完成签到,获得积分10
6秒前
舒适亦绿发布了新的文献求助20
6秒前
szy完成签到,获得积分10
6秒前
背后小刺猬完成签到,获得积分10
6秒前
俊逸的鲜花完成签到,获得积分10
6秒前
腼腆的赛君完成签到,获得积分10
6秒前
6秒前
七七完成签到,获得积分10
6秒前
科研民工完成签到,获得积分10
6秒前
吕万鹏完成签到,获得积分10
7秒前
LiPengpeng完成签到,获得积分10
7秒前
Stella发布了新的文献求助50
7秒前
7秒前
WJ完成签到,获得积分10
7秒前
哈哈哈哈哈哈完成签到,获得积分10
7秒前
笨笨念文发布了新的文献求助20
7秒前
Cat完成签到,获得积分0
7秒前
tianzml0应助史萌采纳,获得10
7秒前
顾矜应助hhhhhy采纳,获得10
8秒前
puzhongjiMiQ发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470973
求助须知:如何正确求助?哪些是违规求助? 4573732
关于积分的说明 14340942
捐赠科研通 4500870
什么是DOI,文献DOI怎么找? 2466059
邀请新用户注册赠送积分活动 1454266
关于科研通互助平台的介绍 1428936