Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images

体素 分割 锥束ct 人工智能 病变 计算机科学 预测值 数据集 核医学 模式识别(心理学) 医学 放射科 计算机断层摄影术 病理 内科学
作者
Frank Setzer,Katherine J. Shi,Zhiyang Zhang,Hao Yan,Hyunsoo Yoon,Mel Mupparapu,Jing Li
出处
期刊:Journal of Endodontics [Elsevier]
卷期号:46 (7): 987-993 被引量:178
标识
DOI:10.1016/j.joen.2020.03.025
摘要

The aim of this study was to use a Deep Learning (DL) algorithm for the automated segmentation of cone-beam computed tomographic (CBCT) images and the detection of periapical lesions.Limited field of view CBCT volumes (n = 20) containing 61 roots with and without lesions were segmented clinician dependent versus using the DL approach based on a U-Net architecture. Segmentation labeled each voxel as 1 of 5 categories: "lesion" (periapical lesion), "tooth structure," "bone," "restorative materials," and "background." Repeated splits of all images into a training set and a validation set based on 5-fold cross validation were performed using Deep Learning segmentation (DLS), and the results were averaged. DLS versus clinical-dependent segmentation was assessed by dichotomized lesion detection accuracy evaluating sensitivity, specificity, positive predictive value, negative predictive value, and voxel-matching accuracy using the DICE index for each of the 5 labels.DLS lesion detection accuracy was 0.93 with specificity of 0.88, positive predictive value of 0.87, and negative predictive value of 0.93. The overall cumulative DICE indexes for the individual labels were lesion = 0.52, tooth structure = 0.74, bone = 0.78, restorative materials = 0.58, and background = 0.95. The cumulative DICE index for all actual true lesions was 0.67.This DL algorithm trained in a limited CBCT environment showed excellent results in lesion detection accuracy. Overall voxel-matching accuracy may be benefited by enhanced versions of artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳静枫发布了新的文献求助10
刚刚
刚刚
1秒前
单纯的问儿完成签到,获得积分10
1秒前
1秒前
善学以致用应助不卷心菜采纳,获得10
1秒前
生动飞凤发布了新的文献求助20
3秒前
小蘑菇应助mf采纳,获得10
3秒前
科研兄发布了新的文献求助10
4秒前
捌懿发布了新的文献求助10
4秒前
5秒前
黄则已发布了新的文献求助10
5秒前
6秒前
悦耳静枫完成签到,获得积分10
6秒前
美羊羊发布了新的文献求助30
6秒前
yxt完成签到,获得积分10
7秒前
7秒前
没钱搞什么学术完成签到 ,获得积分10
7秒前
夹心饼干完成签到 ,获得积分10
9秒前
9秒前
上官若男应助刘英岑采纳,获得10
10秒前
JamesPei应助Andy采纳,获得10
10秒前
无极微光应助单薄的沛槐采纳,获得20
10秒前
赘婿应助Duomo采纳,获得10
11秒前
12秒前
高斯发布了新的文献求助10
12秒前
七七发布了新的文献求助10
14秒前
wei关闭了wei文献求助
14秒前
16秒前
16秒前
WB87应助优雅的盼夏采纳,获得10
16秒前
李lj完成签到,获得积分10
16秒前
嗨嗨害发布了新的文献求助10
16秒前
shhoing应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
33应助科研通管家采纳,获得10
17秒前
口岸是你应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537346
求助须知:如何正确求助?哪些是违规求助? 4624899
关于积分的说明 14593747
捐赠科研通 4565427
什么是DOI,文献DOI怎么找? 2502354
邀请新用户注册赠送积分活动 1480976
关于科研通互助平台的介绍 1452191