材料科学
氧化还原
氧气
阴极
氧化物
工作(物理)
化学工程
无机化学
化学物理
热力学
化学
物理化学
物理
工程类
有机化学
冶金
作者
Geon‐Hee Yoon,Sojung Koo,Sung‐Joon Park,Jaewoon Lee,Chanwoo Koo,Seok Hyun Song,Tae‐Yeol Jeon,Hyungsub Kim,Jong‐Seong Bae,Won‐Jin Moon,Sung‐Pyo Cho,Duho Kim,Seung‐Ho Yu
标识
DOI:10.1002/aenm.202103384
摘要
Abstract The demands for higher energy density of rechargeable batteries have been continuously increasing recently, and cationic redox based current cathodes have little scope to further increase energy density since they already exhibit near‐theoretical specific capacities. In this regard, oxygen redox (OR) reactions have emerged as a promising breakthrough for sodium‐ion battery (SIB) cathodes. Most OR‐based layered oxides suffer from drastic hysteretic‐oxygen capacities upon discharging after the first charging. In contrast, stable and nonhysteretic oxygen capacities are herein enabled via Al 3+ incorporation into Li‐excess Na layered oxide (NLMO). By combining experimental work and first‐principles calculations, it is found that there is an additional stable phase during the oxygen redox for Al incorporated NLMO in comparison with bare NLMO, which is a critical factor in extending and stabilizing the discharge capacity in thermodynamics. In addition, the additional redox‐inactive Al 3+ leads to heterogeneous oxygen redox rather than homogeneous, which results in stabilization of the oxide framework with sensitively control of the oxygen participation upon cycling.
科研通智能强力驱动
Strongly Powered by AbleSci AI