Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms

高光谱成像 模式识别(心理学) 计算机科学 卷积神经网络 人工智能 特征选择 主成分分析 传感器融合 多光谱图像 融合 数据集 变量(数学) 算法 数学 哲学 数学分析 语言学
作者
Jie Hao,Fujia Dong,Yalei Li,Songlei Wang,Jiarui Cui,Zhifeng Zhang,Kangning Wu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:125: 104286-104286 被引量:37
标识
DOI:10.1016/j.infrared.2022.104286
摘要

Deep convolutional neural networks have been applied to hyperspectral imaging (HSI) and have significantly improved modelling performance in many spectral analysis tasks due to their automatic extraction of relevant features. Using visible and near infrared hyperspectral (Vis-NIR) data, two-dimensional convolutional neural network (2D-CNN) discrimination models between the spectra of wolfberries and their corresponding classes of geographical origins were established and optimized using various variable selection and data fusion methods. The interval variable iterative space shrinking analysis (iVISSA), the uninformative variable elimination (UVE) algorithm, competitive adaptive reweighted sampling (CARS) and the iterative retained information variable (IRIV) algorithms were used to extract the feature wavelengths and compare the modelling effects; and then the 72 optimal wavelengths were extracted by the iVISSA algorithm. To extract the textural features of images, grey-level co-occurrence matrix (GLCM) analysis was conducted on the first principal component image. Models using variable selection methods based on low-level fusion data were superior to the corresponding methods based on single spectral data. The model based on iVISSA achieved the best result on mid-level fusion, the prediction set accuracy and mean F1 were 97.34% and 100%, respectively. Finally, optimized models of spectral-textural data were employed to identify the geographical origins of wolfberries. In general, the results showed that 2D-CNN model combined with fusion data of spectral and textural information can obtain excellent identification effect for the near geographical origins of wolfberries. This study may help develop an online detection system of near geographical origins of wolfberries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Selena发布了新的文献求助10
1秒前
1秒前
3秒前
6秒前
稻草人发布了新的文献求助10
7秒前
灵巧的手机完成签到,获得积分10
7秒前
小柯基学从零学起完成签到 ,获得积分10
8秒前
薯片发布了新的文献求助10
8秒前
8秒前
天天快乐应助怡然的姿采纳,获得10
9秒前
levn完成签到,获得积分10
10秒前
zho应助blueblue采纳,获得10
10秒前
EMM发布了新的文献求助10
13秒前
13秒前
zxcvvbnm完成签到 ,获得积分10
16秒前
摆渡人发布了新的文献求助10
16秒前
欧阳完成签到 ,获得积分10
19秒前
无情干饭崽完成签到,获得积分10
19秒前
柯柯完成签到,获得积分10
25秒前
26秒前
早早完成签到,获得积分10
27秒前
momo发布了新的文献求助10
30秒前
32秒前
李爱国应助亲爱的安德烈采纳,获得30
33秒前
赘婿应助早早采纳,获得10
34秒前
hh发布了新的文献求助10
35秒前
summitekey完成签到 ,获得积分10
38秒前
ly普鲁卡因完成签到,获得积分10
39秒前
友好的小鸽子完成签到,获得积分10
43秒前
Owen应助Phosphate采纳,获得10
45秒前
MXene完成签到,获得积分0
46秒前
biubiubiu完成签到 ,获得积分10
47秒前
零零完成签到,获得积分20
49秒前
woodaptx完成签到,获得积分10
50秒前
52秒前
111完成签到 ,获得积分10
52秒前
53秒前
李敬语完成签到,获得积分10
53秒前
化白发布了新的文献求助10
53秒前
54秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843667
求助须知:如何正确求助?哪些是违规求助? 3385966
关于积分的说明 10543359
捐赠科研通 3106778
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823925
科研通“疑难数据库(出版商)”最低求助积分说明 774390