Evolutionary analysis of the global rare earth trade networks

国际贸易 全球网络 网络分析 稀土 发展中国家 计算机科学 业务 地理 经济地理学 经济 地质学 地球科学 经济增长 电信 物理 量子力学
作者
Guihai Yu,Chao Xiong,Jianxiong Xiao,Deyan He,Gang Peng
出处
期刊:Applied Mathematics and Computation [Elsevier BV]
卷期号:430: 127249-127249 被引量:29
标识
DOI:10.1016/j.amc.2022.127249
摘要

This study used social network analysis, spatial measurement, and network statistical analysis to study the relationships among countries in the global rare earth trade. Using data on rare earth products from the UN Comtrade database, the global rare earth trade network and its evolving topological characteristics are analyzed for the period 1999–2020. Spatial correlation analysis using the global Moran index showed that countries tended to carry out rare earth trade with neighboring countries, and there were certain spatial aggregations in the trade patterns. A temporal exponential random graph model (TERGM) was used to analyze the influencing factors and evolution of the global rare earth trade, and network motif analysis was used to analyze the influence of network topology on the trading network structure. The results showed that the global rare earth trade model presented the following characteristics: trade from one core country to many other countries, reciprocity between trading countries, and trade around near neighboring rare earth-rich countries. Other factors, such as countries with the same GDP levels and World Trade Organization (WTO) member countries, influenced the global rare earth trade but not the formation of the rare earth trade network. In examining the temporal dependence of rare earth trade networks over a 22-year period, it was found that the linkages of rare earth trade networks among countries remained relatively stable, pointing to the long-term dependence of countries with scarce rare earth resources on resource-rich countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡坦精完成签到,获得积分20
1秒前
寒冷人达发布了新的文献求助10
1秒前
唐111发布了新的文献求助20
3秒前
卢嘉禾发布了新的文献求助10
3秒前
3秒前
Capper完成签到,获得积分10
4秒前
科研通AI2S应助柏林采纳,获得10
5秒前
爆米花应助xc采纳,获得10
7秒前
风想随心发布了新的文献求助10
7秒前
Hoxiun发布了新的文献求助10
8秒前
9秒前
愤怒的小马完成签到,获得积分10
9秒前
wanci应助ccc采纳,获得10
10秒前
11秒前
LL完成签到,获得积分20
11秒前
程大海完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
小树苗完成签到,获得积分10
15秒前
猪猪hero发布了新的文献求助10
15秒前
LL发布了新的文献求助10
16秒前
16秒前
16秒前
yjx完成签到,获得积分10
17秒前
杜景婷完成签到 ,获得积分10
17秒前
达到发布了新的文献求助10
17秒前
treelet007发布了新的文献求助10
18秒前
林黛玉发布了新的文献求助10
18秒前
丘比特应助邓翰林采纳,获得10
18秒前
qzaima应助王染墨采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
20秒前
一一应助科研通管家采纳,获得10
20秒前
Akim应助XHW采纳,获得10
20秒前
20秒前
大模型应助科研通管家采纳,获得10
20秒前
20秒前
balelalala发布了新的文献求助10
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836283
求助须知:如何正确求助?哪些是违规求助? 3378620
关于积分的说明 10505293
捐赠科研通 3098250
什么是DOI,文献DOI怎么找? 1706351
邀请新用户注册赠送积分活动 820987
科研通“疑难数据库(出版商)”最低求助积分说明 772351