Predicting clinical trial outcomes using drug bioactivities through graph database integration and machine learning

随机森林 机器学习 人工智能 计算机科学 临床试验 工作流程 分类器(UML) 药物开发 数据挖掘 药品 医学 数据库 精神科 病理
作者
Vidhya Murali,Y. Pradyumna Muralidhar,Cassandra Königs,Meera Nair,Sethulekshmi Madhu,Prema Nedungadi,Gowri Srinivasa,Prashanth Athri
出处
期刊:Chemical Biology & Drug Design [Wiley]
卷期号:100 (2): 169-184 被引量:9
标识
DOI:10.1111/cbdd.14092
摘要

Abstract The ability to estimate the probability of a drug to receive approval in clinical trials provides natural advantages to optimizing pharmaceutical research workflows. Success rates of clinical trials have deep implications for costs, duration of development, and under pressure due to stringent regulatory approval processes. We propose a machine learning approach that can predict the outcome of the trial with reliable accuracies, using biological activities, physicochemical properties of the compounds, target‐related features, and NLP‐based compound representation. In the above list, biological activities have never been used as an independent variable towards the prediction of clinical trial outcomes. We have extracted the drug–disease pair from clinical trials and mapped target(s) to that pair using multiple data sources. Empirical results demonstrate that ensemble learning outperforms independently trained, small‐data ML models. We report results and inferences derived from a Random forest classifier with an average accuracy of 93%, and an F1 score of 0.96 for the “Pass” class. “Pass” refers to one of the two classes (Pass/Fail) of all clinical trials, and the model performed well in predicting the “Pass” category. Through the analysis of feature contributions to predictive capability, we have demonstrated that bioactivity plays a statistically significant role in predicting clinical trial outcome. A significant effort has gone into the production of the dataset that, for the first time, integrates clinical trial information with protein targets. Cleaned, organized, integrated data and code to map these entities, created as a part of this work, are available open‐source. This reproducibility and the freely available code ensure that researchers with access to deep curated and proprietary clinical trial databases (we only use open‐source data in this study) can further expand the scope of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿洁发布了新的文献求助10
刚刚
就发酵罐发布了新的文献求助10
1秒前
不读文献的厨子不是好医生完成签到,获得积分10
1秒前
1秒前
科研通AI6应助哒哒哒采纳,获得40
1秒前
历史真相完成签到,获得积分20
2秒前
2秒前
bingsu108发布了新的文献求助10
3秒前
大模型应助aaacg采纳,获得10
3秒前
可爱的函函应助妮妮宝采纳,获得10
3秒前
失眠无声完成签到,获得积分10
3秒前
3秒前
Aiz关闭了Aiz文献求助
4秒前
4秒前
珞珈发布了新的文献求助10
4秒前
刘肖完成签到,获得积分10
4秒前
冷酷寇完成签到 ,获得积分10
4秒前
bb发布了新的文献求助10
5秒前
研友_LOaaVZ完成签到,获得积分10
5秒前
万能图书馆应助遥远星辰采纳,获得10
5秒前
6秒前
海盐咸喵完成签到 ,获得积分10
7秒前
7秒前
孤蚀月发布了新的文献求助10
7秒前
雷欣欣发布了新的文献求助10
7秒前
星辰大海应助叶95采纳,获得30
8秒前
所所应助345678与采纳,获得10
8秒前
ilihe应助蓦然采纳,获得10
8秒前
科目三应助等待醉卉采纳,获得10
8秒前
8秒前
zl12345发布了新的文献求助10
9秒前
9秒前
asasd完成签到,获得积分10
9秒前
10秒前
10秒前
yuyu发布了新的文献求助20
10秒前
兜里全是糖完成签到,获得积分10
10秒前
10秒前
10秒前
英吉利25发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5631560
求助须知:如何正确求助?哪些是违规求助? 4725539
关于积分的说明 14979539
捐赠科研通 4789700
什么是DOI,文献DOI怎么找? 2557893
邀请新用户注册赠送积分活动 1518435
关于科研通互助平台的介绍 1478928