亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic-preserved Communication System for Highly Efficient Speech Transmission

计算机科学 传输(电信) 语音识别 任务(项目管理) 语音活动检测 频道(广播) 语音处理 发射机 自然语言处理 语音分析 数据传输 人工智能 计算机网络 电信 经济 管理
作者
Tianxiao Han,Qianqian Yang,Zhiguo Shi,Shibo He,Zhaoyang Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2205.12727
摘要

Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In contrast to traditional wireless communication methods that focus on the transmission of abstract symbols, semantic communication approaches attempt to achieve better transmission efficiency by only sending the semantic-related information of the source data. In this paper, we consider semantic-oriented speech transmission which transmits only the semantic-relevant information over the channel for the speech recognition task, and a compact additional set of semantic-irrelevant information for the speech reconstruction task. We propose a novel end-to-end DL-based transceiver which extracts and encodes the semantic information from the input speech spectrums at the transmitter and outputs the corresponding transcriptions from the decoded semantic information at the receiver. For the speech to speech transmission, we further include a CTC alignment module that extracts a small number of additional semantic-irrelevant but speech-related information for the better reconstruction of the original speech signals at the receiver. The simulation results confirm that our proposed method outperforms current methods in terms of the accuracy of the predicted text for the speech to text transmission and the quality of the recovered speech signals for the speech to speech transmission, and significantly improves transmission efficiency. More specifically, the proposed method only sends 16% of the amount of the transmitted symbols required by the existing methods while achieving about 10% reduction in WER for the speech to text transmission. For the speech to speech transmission, it results in an even more remarkable improvement in terms of transmission efficiency with only 0.2% of the amount of the transmitted symbols required by the existing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
43秒前
花园里的蒜完成签到 ,获得积分0
58秒前
Werner完成签到 ,获得积分10
1分钟前
LMY完成签到 ,获得积分10
1分钟前
自觉平露完成签到,获得积分10
1分钟前
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
2分钟前
月满西楼发布了新的文献求助10
2分钟前
mashibeo完成签到,获得积分10
2分钟前
月满西楼完成签到,获得积分10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
852应助zz采纳,获得10
3分钟前
Yogita完成签到,获得积分10
4分钟前
康康XY完成签到 ,获得积分10
4分钟前
4分钟前
小龙完成签到,获得积分10
4分钟前
mingming发布了新的文献求助10
4分钟前
大模型应助mingming采纳,获得10
5分钟前
cheng完成签到,获得积分10
5分钟前
胖胖猪完成签到,获得积分10
6分钟前
6分钟前
Blossom关注了科研通微信公众号
7分钟前
7分钟前
Blossom发布了新的文献求助10
7分钟前
精明的远锋完成签到,获得积分20
7分钟前
7分钟前
坚强的广山完成签到,获得积分0
8分钟前
星辰大海应助科研通管家采纳,获得10
8分钟前
Panther完成签到,获得积分10
9分钟前
9分钟前
OCDer完成签到,获得积分0
9分钟前
lixuebin完成签到 ,获得积分10
9分钟前
9分钟前
黑香菱发布了新的文献求助10
9分钟前
追寻绮玉完成签到,获得积分10
9分钟前
kbcbwb2002完成签到,获得积分10
9分钟前
9分钟前
HuiHui完成签到,获得积分10
9分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830461
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475411
捐赠科研通 3092588
什么是DOI,文献DOI怎么找? 1702165
邀请新用户注册赠送积分活动 818806
科研通“疑难数据库(出版商)”最低求助积分说明 771093