AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

计算机科学 利用 邻接矩阵 图形 算法 人工神经网络 人工智能 最大化 机器学习 理论计算机科学 数学优化 数学 计算机安全
作者
Wei Zhang,Fenghua Zhu,Yisheng Lv,Chang Tan,Ryan Wen Liu,Xin Zhang,Fei‐Yue Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:139: 103659-103659 被引量:70
标识
DOI:10.1016/j.trc.2022.103659
摘要

With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic prediction have achieved great performance in numerous tasks. Compared to other methods, the networks can exploit the latent spatial dependencies between nodes according to the adjacency relationship. However, as the topological structure of the real road network tends to be intricate, it is difficult to accurately quantify the correlations between nodes in advance. In this paper, we propose a graph convolutional network based adaptive graph learning algorithm (AdapGL) to acquire the complex dependencies. First, by developing a novel graph learning module, more possible correlations between nodes can be adaptively captured during training. Second, inspired by the expectation maximization (EM) algorithm, the parameters of the prediction network module and the graph learning module are optimized by alternate training. An elaborate loss function is leveraged for graph learning to ensure the sparsity of the generated affinity matrix. In this way, the expectation maximization of one part can be realized under the condition that the other part is the best estimate. Finally, the graph structure is updated by a weighted sum approach. The proposed algorithm can be applied to most graph convolution based networks for traffic forecast. Experimental results demonstrated that our method can not only further improve the accuracy of traffic prediction, but also effectively exploit the hidden correlations of the nodes. The source code is available at https://github.com/goaheand/AdapGL-pytorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
SSSstriker完成签到,获得积分10
2秒前
nana完成签到 ,获得积分10
3秒前
4秒前
4秒前
老黑发布了新的文献求助10
6秒前
kinmke完成签到,获得积分10
9秒前
脑洞疼应助Shan采纳,获得10
9秒前
鳗鱼友琴发布了新的文献求助10
9秒前
wanci应助单纯的访冬采纳,获得10
12秒前
瑾沫流年完成签到,获得积分10
12秒前
16秒前
Cheung2121完成签到,获得积分20
19秒前
20秒前
Cheung2121发布了新的文献求助30
21秒前
单纯的访冬完成签到,获得积分10
21秒前
小月986完成签到,获得积分10
22秒前
大豆cong发布了新的文献求助30
22秒前
23秒前
25秒前
舒适念真发布了新的文献求助30
27秒前
梦nv孩完成签到,获得积分10
28秒前
南宫古伦完成签到 ,获得积分10
29秒前
俭朴夜香发布了新的文献求助10
32秒前
36秒前
Tiwiiw完成签到 ,获得积分10
37秒前
NexusExplorer应助大豆cong采纳,获得10
38秒前
杨震发布了新的文献求助30
42秒前
小蘑菇应助Oliver采纳,获得10
49秒前
51秒前
54秒前
56秒前
Lucas应助m1采纳,获得10
58秒前
在水一方应助jumbaumba采纳,获得10
58秒前
疯狂的元风完成签到 ,获得积分10
58秒前
59秒前
Oliver发布了新的文献求助10
1分钟前
猫咪老师给jeeya的求助进行了留言
1分钟前
香蕉觅云应助xiao金采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780364
求助须知:如何正确求助?哪些是违规求助? 3325704
关于积分的说明 10224008
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669040
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648