Learning Deep Binary Descriptors via Bitwise Interaction Mining.

按位运算 计算机科学 二进制数 人工智能 二进制代码 操作员(生物学) 模式识别(心理学) 理论计算机科学 数据挖掘 算法 机器学习
作者
Ziwei Wang,Han Xiao,Yueqi Duan,Jie Zhou,Jiwen Lu
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:PP
标识
DOI:10.1109/tpami.2022.3161600
摘要

In this paper, we propose a GraphBit method to learn unsupervised deep binary descriptors for efficient image representation. Conventional binary representation learning methods directly quantize each element according to the threshold without considering the quantization ambiguousness. The elements near the boundary dubbed as ambiguous bits fail to collect effective information for reliable binarization and are sensitive to noise that causes reversed bits. Since the ambiguous bits receive additional instruction from the graph for reliable binarization. Moreover, we further present a differentiable search method (GraphBit+) that mines the bitwise interaction in continuous space, so that the heavy search cost caused by the training difficulties in reinforcement learning is significantly reduced. Since the GraphBit and GraphBit+ methods learn fixed bitwise interaction which is suboptimal for various input, the inaccurate instruction from the fixed bitwise interaction cannot effectively decrease the ambiguousness of binary descriptors. To address this, we further propose the unsupervised binary descriptor learning method via dynamic bitwise interaction mining (D-GraphBit), where a graph convolutional network called GraphMiner reasons the optimal bitwise interaction for each input sample. Extensive experimental results datasets demonstrate the efficiency and effectiveness of the proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助整齐唯雪采纳,获得10
1秒前
科研通AI5应助单薄的棒球采纳,获得10
4秒前
学术小虫完成签到,获得积分10
5秒前
5秒前
一期一会完成签到,获得积分10
6秒前
逸风望完成签到,获得积分10
6秒前
7秒前
nojivv完成签到,获得积分10
7秒前
科研通AI5应助lzy采纳,获得10
10秒前
芋泥夹心发布了新的文献求助10
11秒前
sweetbearm应助ztt采纳,获得10
12秒前
12秒前
qf123456发布了新的文献求助10
13秒前
15秒前
米龙完成签到,获得积分10
15秒前
weihong发布了新的文献求助10
17秒前
高贵白凝完成签到,获得积分10
19秒前
22秒前
zxj完成签到,获得积分10
22秒前
冯劫发布了新的文献求助10
23秒前
westernline完成签到,获得积分10
24秒前
25秒前
25秒前
CodeCraft应助shmily采纳,获得10
26秒前
Ava应助闪闪半芹采纳,获得10
26秒前
钰是不珏发布了新的文献求助30
28秒前
李洪杰发布了新的文献求助10
30秒前
wa发布了新的文献求助10
30秒前
Orange应助Asystasia7采纳,获得10
32秒前
科研通AI5应助芋泥夹心采纳,获得10
35秒前
领导范儿应助醉书生采纳,获得10
36秒前
易止完成签到 ,获得积分10
37秒前
38秒前
40秒前
钰是不珏完成签到,获得积分10
40秒前
Yfvonne完成签到,获得积分10
42秒前
43秒前
斯文败类应助dong采纳,获得10
43秒前
斯文败类应助乌漆嘛黑采纳,获得10
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794581
求助须知:如何正确求助?哪些是违规求助? 3339416
关于积分的说明 10295977
捐赠科研通 3056108
什么是DOI,文献DOI怎么找? 1676896
邀请新用户注册赠送积分活动 804920
科研通“疑难数据库(出版商)”最低求助积分说明 762198